LINUX
Q o

Revealing High-Risk Security
Impacts of Fuzzer-Exposed
Bugs in Linux kernel

SyzScope

Xiaochen Zou

University of California, Riverside e
@ETenal7 L] ENUX

Background

v ‘

syzbot Linux

| it Oven [1012]] | #k Fixcd [3188]| | i Invalid [5883]

Bugs haven’t been fixed Bugs have been fixed

Focus of our study: Linux kernel bugs e Memory bug ~1000

Fuzzer: Syzkaller
e WARNING + INFO ~900

Continuous fuzzing platform: Syzbot

e GPF +invalid ptr defer ~500

THE

L LINUX

FOUNDATION

Background

¥ |

SyZbOt [Linux

| 8t Open [1012]] | ik Fixed [3188]| | #ik Invalid [5883]

Syzbot discovered mainly 8 types of bugs g e __BugTopes_
e KASAN bug: use-after-free, out-of-bounds, double — e
free KASAN: use-after-free Read in sctp_auth_free SS‘:'I‘]‘:‘Z;; 'ff‘é‘::ﬂ “"‘"l‘:fl‘e'fycf e
o KCSAN bug: data-1ace bUg ks suncscisotm e b TR T
e KMSAN bug: uninitialized use xusan: winitvale in bpf_iter_prog_supported ‘
e UBSAN: undefined behavior uBsan: amay-index-out-of-bounds in iece80211 del key
e Kernel assertion bug: WARNING ¥ARNDGin o uine_cancel task sequests
e Kernel assertion bug: INFO mNFO: task hung in tef_action_init_1
e Kernel assertion bug: BUG BUG: receive list entry not found for dev vxeanl. id 003, mask C000...
e General prote ction fault: general protection fault in strncasecmp

THE

L LINUX

FOUNDATION

Bug's security impact

Overwrite Non-security bugs
PWN! uid/gid

Overwrite
PWN! .

function

pointer

Sometimes necessary ILeak kernel
But not mandatory Linfo
THE

L LINUX

FOUNDATION

Motivation - Too many bugs to fix

syzbot [Linux v]

UAF Read | UAF Write
63 days | 37 days
- -

Imagine a WARNING bug that can

exploit the kernel but somehow we OOB Read | OOB Write

lower its priority for fixing due to 89 days | 29 days
misunderstanding its severity

| 88 Open [1012]]| | #k Fixed [3188]| | #k Invalid [5883]

Prioritization on more serious bugs

THE

LINUX

L FOUNDATION

Motivation - Too many patches to port

CVE-2019-2215. a UAF read and fixed in Linux upstream in 52 days.
. Unfortunately, it took over a year for the patch to propagate to
L"l‘i-xé Mainline 44 4.5 4.6 e _ dOWnStream

Linux\ LTS
44y

& . Patch delay between upstream and
;";";’,“}com;“m.n,m Ubuntu of OOB write bugs is 59 days

Qualcomm 4.4 Stable 15
TxAOM Wi6 2 Patch delay between upstream and

O rorc O Pateh \ Patch propagation Ubuntu of WARNING errors is 83 days

Because of misunderstanding the severity of a potential high-risk bug,
a downstream kernel may remain unpatched for quite a long time or
forever

Syzbot overwhelm downstream maintainers with a huge number of pai-ef

LINUX

FOUNDATION

Questions to answer

e Are all seemingly low-risk bugs actually low-risk? No
e Do bug reports always reveal the real impact of bugs? No

e Can we convert aseemingly low-risk bug to a high-risk vac
bug automatically?

THE

L LINUX

FOUNDATION

Goal and non-goal

Goal: SyzScope aims to reveal high-risk impacts of a seemingly
low-risk bug

Non-goal: SyzScope does NOT aim to produce an end-to-end
exploit automatically.

KOOBE: Towards Facilitating Exploit Generation of Kernel Out-Of-Bounds Write
Vulnerabilities

FUZE: Towards Facilitating Exploit Generation for Kernel Use-After-Free Vulnerabilities

THE

LINUX

L FOUNDATION

xecygion Pat

1. Fuzzing only present the first impact of a
bug

A
2. Bug's title on syzbot only shows the first panic_on_warn=1 n
iImpact instead of the most risky impact wARNING

UAF Read UAF Write
THE

L LINUX

FOUNDATION

WARNING in qp_broker_alloc

Insight

High-risk impacts: Low-risk impacts:
e UAF/OOB Write e UAF/OOB Read
e Invalid Free e WARNING/INFO
e | Control flow hijacking e General protection fault
e | Arbitrary/Constrained value write e BUG
e | Arbitrary/Constrained address write e All other non-security bugs
N
Follow up impacts
Blue means this impact can be detected by fuzzing THE
LIENOX

Red means this impact can not be detected by fuzzing

Motivating example

KASAN: slab-out-of-bounds Read in tcf exts destroy

1 | static void tcindex_free_perfect_hash(struct
tcindex_data *cp) {

2 for (int i = 0; i < Cp—>hash¢k . .
3 tcf exts destroy [Ecp->perfect 1] ext) ; — cp->hash is bigger than the length of cp->perfect arrary
4 kfree (cp->perfectT/;
s |}
3

voi f u exts .y - .. .
DTl pastxts_destroy(struct tef-exts \CE |~ cp->perfect]i] is out-of-bound when i is bigger than
12) tcf_action_destroy¥gxts->actions) ; |ength Of Cp'>perfect

OOB read captured by KASAN

THE

L LINUX

FOUNDATION

Motivating example

KASAN: slab-out-of-bounds Read in tcf exts destroy

i1 | static void tcindex_free_perfect_hash(struct
tcindex_data #*cp) {
for (int i = 0; i < cp->hash; i++)

Kot axte dastoy (hep-dpacfoct(i] exts) What if we let fuzzing continue instead
/ g

kfree(cp->perfect);

} .
| M of stop at the first bug report?
void tcf_exts_destr tcf_exts xexts) {

if (exts->actions)
tcf_action_destroy

(exts->actions) ;

= 2 e NE MR W N

e

Can we capture the AAW write
Iater? OOB memory

exts

12 | int tcf_

tion_destroy(struct tc_action # Objl i=0 ()bj2i=1

13 struct tc_action #*a;

14 for : 3 < TCA_ACT_MAX_PRIO && \
actions[i]¥ Kernel panic or actions
15 a = act : action[i] == 0
actions(i NULL // AAW cp->perfect DD]:':I

16

17 ret = tcf._action.cleanup(a);
o } } OXFFFFFFFF40000000 (valid)
e 0x40 (invalid) THE

L LINUX

FOUNDATION

AAW = Arbitrary address

Motivating example

12 | int tcf_action_destroy(struct tc_action *
actions([]) {

13 struct tc_action =*a;

14 for (i = 0; i < TCA_ACT_MAX_PRIO &%

. [i ::;‘fvt:.;n:.;‘;J;' i++) {] Objl i=0 ()bj2i=1 OOB Memory
= NULL; // W

i: ret = tcf._act xon,cleanupA(A:x) H

. | ﬁi? \
cp->perfect I:I:":I:I

exts

action

THE

L LINUX

FOUNDATION

Motivating example

KASAN: slab-out-of-bounds Read in tcf_exts_destroy

i1 | static void tcindex_free_perfect_hash(struct
tcindex_data *cp) { 21 | static void tcf_action_cleanup(struct
2 for (int i = 0; i < cp->hash; i++) .
3 tcf_exts_destroy (&cp->perfect[i] .exts) ; tc_&ctld}ﬁ} {
a kfree (cp->perfect); 22 if (p->ops->cdeanup)
s [} 23 | P.:-apy(luanup(pjr // FPD
6 2 |}
7 | void tcf_exts_destroy(struct tcf_exts =*exts) {
8 if (exts->actions)
9 tcf_action destroy(exts->actions) ;
10 }
1

Heap Spraying

12 int tcf_action_destroy(struct tc_action *
actions([]) {

13 struct tc_action *a;

14 for (i = 0; i < TCA_ACT_MAX_PRIO

obj1l =0
c }; i++) {
: . ﬁ \ ops =P cleanup
17 ret = tcf_aczlon_cleanupm); actions

16 actions(i] = NULL; // AAW
18 } cp->perfect
19 |}

THE

Oxffffffff40000000 (valid)
0x40 (invalid) L LINUX

FOUNDATION

Assumption: UAF/OOB objects are controlled by attackers using heap spraying

Problem: UAF/OOB objects cannot be controlled by fuzzer alone

Problem: Fuzzer was blocked by kernel panic or complicated constraints

1
i i i * . . .
12 int taiii_:ncst[;?nzdestroy (struct tec_action Symbol/c execution is a program
13 struct tc_action *a; BUG: kernel NULL pointer dereference, address: ©660000000000008 analysts' technlque that uses
14 for I—{—]i]:—‘—lLTCﬂ-ﬁCT-MAX_PRID L2 #PF: supervisor instruction fetch in kernel mode symbo//c value instead ofa
actions[i] j€tF+r—f #PF: error_code(@x0018) - not-present page i
15 a = actions[i]; PGD 1d5b1087 PAD 1d5b1067 PUD 13a4des? PMD @ concre?e value during program
16 actions[i] = NULL: AAW Oops: ©@1e [#1] PREEMPT SMP KASAN execution.
17 ret = __tcf_idr_release H . .
18 1} Take the true branch SH’am mngt I O n
1w |} %fﬂ/semunch
exts
actions+i is a valid memory actions+i must be a valid i
address OR actions|i] == 0 memory address AND 0 bJ 1 i=0
actions[i] =0

ﬁ \ ops ——> cleanup
actions i

cp->perfect

OXFFFFFFFFA0000000 (valid) THE

0x40 (invalid) L LINUX

FOUNDATION

Two modes of operations - Open vs Fixed bugs

Upstream - open bugs

SyzScope package static analysis and symbolic execution to
explore high-risk impacts behind the low-risk impact.

Downstream - fixed bugs
SyzScope package fuzzing, static analysis and symbolic execution
to explore high-risk impacts behind the low-risk impact.

THE
1 I LINUX
FOUNDATION

Workflow - Fixed bugs & Open bugs

Fixed Bugs
Open Bugs
Build] kernel |_]
PoC 1
-
Low-risk Extract Kernel Symbolic d‘;a"d I Rew
ra Additiona New
bug (PoC, /> Deployer » PoC | e PoC 2 |—+ . + Collector Bug ;L
o u * Collector B
| report) L Fuzzer Execution ses report g :ogrt
Distill| SYstem 5oC 3
Mocall [T
Vulnerable Contexts Exploration Validation and Evaluation —
Figure 2: Workflow
THE
L LINUX
FOUNDATION

Fuzzing - Restricted fuzzing

1. Provides more UAF/OOB contexts
to symbolic execution

2. Does not stop at the first impact

3. Conservative mutating strategy

Fuzzing is only enabled for cases with patches

T~

sendmsg(1,2,3)

R

Double Free

THE
LINUX
FOUNDATION

Fuzzing - New contexts verification

PoC for
new buggy
context

Trigger
|:> ez the new > Abbandon
Kernel 5
impact
nothing@iggered
Valid new
context L E‘ZEL%HO’S

Fuzzer - Impact aware fuzzing

We use Syzkaller as our fuzzer

1. Let Syzkaller catch multiple bug
Impacts along one execution path
and pick up the most high-risk one
(eg. WARNING->UAF Write)

2. Not only does it have code
coverage feedback, but we also
added impact feedback.

Fuzzer manger

Mutater

Test case A

Sending test case
execu

Guest machine

=z

Executor

We also consider a seed that triggers a new impact THE

as an interesting candidate, and further mutate it

L LINUX

FOUNDATION

Symbolic Execution - Architecture

Our symbolic execution starts at bug’s first KASAN report

pa—

The buggy address belongs to the object at ffff8881437d57e@

which belongs to the cache kmalloc-64 of size 64

The buggy address is located 16 bytes inside of

64-byte region [ffff8881437d5700, Tfff8881437d574

The buggy address belongs to the page:

page:000000803e519aab refcount:1l mapcount:® mapping:00000000800000008 index:exffffss

QEMU

=Y

Seta

Dynamic retrieve
memory content
when need it

Memory |

breakpoint at
kasan_report

set the registers

Registers |

flags: @x57ffeeo0ese028e(slab)

raw: @57ffooeeeoee200 ffffea@@0511ff88 ffffea@@851d0ad8 ffff888010841648
raw: ffff8881437d5bo0 2000000000200019 @0LRReRLffffffff 0000000020000000
page dumped because: kasan: bad access detected

Vemory state around the buggy address:

ffff8881437d5600: 00 @0 @0 8@ @8 fc fc fc fc fc fc fc fc fc fc fc
ffff8881437d5680: 00 @0 @0 @@ @@ fc fc fc fc fc fc fc fc fc fc fc
>ffff8881437d578@: fa fb fb fb fb fb fb fb fc fc fc fc fc fc fc fe

ffff8881437d5780: 60 00 00 00 88 88 fc fc fc fc fc fc fc fc fc fe
ffff8881437d5800: 00 @0 @0 @@ @@ 80 fc fc fc fc fc fc fc fc fc fc

symbolize

THE

L LINUX

FOUNDATION

Symbolic Execution - Impacts identification

High-risk impacts:

UAF/OOB Write |

e Invalid Free |

e Control flow hijacking |

e Arbitrary/Constrained value write |

e Arbitrary/Constrained address write |

AV VAR VAR VAR V4

mov [rbx], rax

mov rdi, xxx
call _kfree

call rax

mov [rbx], rax

mov [rbx], rax

THE

L LINUX

FOUNDATION

Dataset

syzbot [Linux v|

| 8 Open [1012]] | #k Fixed [3188]| | i Invalid [5883]

Syzbot discovered mainly 8 types of bugs

e KASAN bug: use-after-free, out-of-bounds, double BugTyve _Embwey
Sanitizer: KASAN out-of-bounds (OOB)
fre e double free

Sanitizer: KCSAN data race
Sanitizer: KMSAN uninitialized use

e Kernel assertion bug: WARNING — S

. Kernel: WARNING / INFO / BUG | Assertions on any unexpected behaviors
[] Ke r n e I a Sse rt I O n b ug : I N FO Kernel: GPF corrupted pointer dereference

* UBSAN (Undefined Behavior Sanitizer) can detect a variety of impacts
e Kernel assertion bug: BUG

e General protection fault: GPF

THE

L LINUX

FOUNDATION

Evaluation

Experiment setup
e 1173 valid bugs

e All experiment are conducted in Ubuntu-18.04 with 1TB memory and
Intel(R) Xeon(R) Gold 6248 20 Core CPU @ 2.50GHz * 2

e 3 hours kernel fuzzing, and 4 hours symbolic execution

THE

L LINUX

FOUNDATION

Overall results

High-risk ooB/UAF Arbitrary Constrained Arbitrary Constrained Control flow Invalid
bug found write address write address write value write value write hijacking Free
Fixed
GPF and BUG 9 164 5 26 19 25 1 3
WARNING
and INFO 19 67 10 13 51 27 10 2
UAF and
OOB Read 85 1749 142 113 531 192 28 1
Open
GPF and BUG 4 2 0 0 2 0 1 0
WARNING
and INFO 8 151 19 2 13 15 11 0
UAF and
OOB Read 22 242 2 21 38 52 0 2
Total 147 2375 178 175 654 311 — ey 18

LINUX
L1 &00ad

Evaluation - Fuzzing

Fuzzing alone discovered 61 high-risk bugs (53%) with 167 impacts (5%).
All impacts found by fuzzing are UAF/OOB write and invalid free.

e The average number of impacts

fixed section (with patches) 27.9 vs open section (without patches) 16.9:
This is because the open bugs did not go through the fuzzing.

e Buggy contexts in fixed section : 1.37 contexts
Buggy context in open section: 1 context

THE

L LINUX

FOUNDATION

Evaluation - Symbolic execution

il buig dipack High-risk bugs Primitives found by Extra high-risk Extra primitives

by fuzzing fuzzing bugs by S&S found by S&S
GPF and BUG 6 6 3 237
WARNING and INFO 10 29 9 151
UAF and OOB Read 45 132 40 2624

S&S = Static analysis and symbolic execution

e 61 bugs that were turned into high-risk by fuzzing alone, the rest 52
bugs in fixed section can only be turned into high-risk by symbolic
execution,

e Symbolic execution discovered 95% impacts including control flow
hijacking, arbitrary address write.

THE

L LINUX

FOUNDATION

< itveas [SECURITY] Fedora 34 Update: kernel-5.11.21-300.fc34

[] I B updates@fedoraproject.org Wednesday, 19 May 2021

Fedora Update Notification
FEDORA-2021-bae582b42c
2021-05-20 01:09:12.599232

We submitted 32 high-risk bugs since
maintainers and 8 of them have been -

Release : 300.fc34

still pending for I’ESPOI Affected Packages and Issued Red Hat Security Errata

Platform Package - State

CVE_202 1_33034 Red Hat Virtualization 4 redhat-virtualization-host Affected

: CVE_202 1_33033 Red Hat Enterprise Linux 7 kernel-rt Affected

PS CVE_ZO 19_2 50 4 4 Red Hat Enterprise Linux 8 kernel-rt Affected

PS CVE-2020-363 86 Red Hat Enterprise Linux 5 ze\;;i VSOre o N
° CVE-2020-36385 Red Hat Enterprise Linux 6 kernel Not affected
° CVE-ZO 18-250 15 Red Hat Enterprise Linux 7 kernel Affected

° CVE-2020-36387 Red Hat Enterprise Linux 8 kernel Affected

[

CVE-2019-25045
[

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33034

Publish

Our paper will appear on USENIX security 2022.

3P [GENIX
SECURTTY SYMPOSIOM

Q&A

Thank you for listening, SyzScope Is now open
source on:

https://github.com/seclab-ucr/SyzScope.qgit

LINUX

Q o

