
@ETenal7

SyzScope
Revealing High-Risk Security
Impacts of Fuzzer-Exposed

Bugs in Linux kernel

Xiaochen Zou

University of California, Riverside

Background

Focus of our study: Linux kernel bugs

Fuzzer: Syzkaller

Continuous fuzzing platform: Syzbot

Bugs haven’t been fixed Bugs have been fixed

● Memory bug ~1000

● WARNING + INFO ~900

● GPF + invalid ptr defer ~500

Background

Syzbot discovered mainly 8 types of bugs
● KASAN bug: use-after-free, out-of-bounds, double

free
● KCSAN bug: data-race bug
● KMSAN bug: uninitialized use
● UBSAN: undefined behavior
● Kernel assertion bug: WARNING
● Kernel assertion bug: INFO
● Kernel assertion bug: BUG
● General protection fault:

Bug’s security impact

Memory
Write
(UAF/OOB)

Overwrite
uid/gid

Overwrite
function
pointer

PWN!

PWN!

Memory
Write
(UAF/OOB)

Memory
Read
(UAF/OOB)

Leak kernel
info

Sometimes necessary
But not mandatory

WARNING INFO

GPF BUG

Non-security bugs

Memory
Read
(UAF/OOB)

WARNING INFO

GPF BUG

Invalid free
(Double
free)

Motivation - Too many bugs to fix

Prioritization on more serious bugs

UAF Read | UAF Write
63 days | 37 days

OOB Read | OOB Write
89 days | 29 days

Imagine a WARNING bug that can
exploit the kernel but somehow we
lower its priority for fixing due to
misunderstanding its severity

Motivation - Too many patches to port

Syzbot overwhelm downstream maintainers with a huge number of patches.

Patch delay between upstream and
Ubuntu of OOB write bugs is 59 days

Patch delay between upstream and
Ubuntu of WARNING errors is 83 days

CVE-2019-2215. a UAF read and fixed in Linux upstream in 52 days.
Unfortunately, it took over a year for the patch to propagate to
downstream

Because of misunderstanding the severity of a potential high-risk bug,
a downstream kernel may remain unpatched for quite a long time or
forever

Questions to answer

● Are all seemingly low-risk bugs actually low-risk?

● Do bug reports always reveal the real impact of bugs?

● Can we convert a seemingly low-risk bug to a high-risk
bug automatically?

No

No

Yes

Goal and non-goal

Goal: SyzScope aims to reveal high-risk impacts of a seemingly
low-risk bug

Non-goal: SyzScope does NOT aim to produce an end-to-end
exploit automatically.

KOOBE: Towards Facilitating Exploit Generation of Kernel Out-Of-Bounds Write
Vulnerabilities

FUZE: Towards Facilitating Exploit Generation for Kernel Use-After-Free Vulnerabilities

Insight

1. Fuzzing only present the first impact of a
bug

2. Bug’s title on syzbot only shows the first
impact instead of the most risky impact

Execution Path

WARNING

UAF Read UAF Write

panic_on_warn=1

Insight

High-risk impacts:

● UAF/OOB Write

● Invalid Free

● Control flow hijacking

● Arbitrary/Constrained value write

● Arbitrary/Constrained address write

Low-risk impacts:

● UAF/OOB Read

● WARNING/INFO

● General protection fault

● BUG

● All other non-security bugs

Blue means this impact can be detected by fuzzing

Red means this impact can not be detected by fuzzing

Follow up impacts

Motivating example

cp->hash is bigger than the length of cp->perfect arrary

cp->perfect[i] is out-of-bound when i is bigger than
length of cp->perfect

OOB read captured by KASAN

Motivating example

What if we let fuzzing continue instead
of stop at the first bug report?

Can we capture the AAW write
later?

obj1 obj2

cp->perfect

i=0 i=1

exts

actions

0xffffffff40000000 (valid)
0x40 (invalid)

Kernel panic or
action[i] == 0

OOB memory

AAW = Arbitrary address
write

Motivating example

obj1 obj2

cp->perfect

i=0 i=1

actions

OOB Memory

Legal Memoryaction

exts

0i=0

i=1

0

Motivating example

obj1 obj2

cp->perfect

i=0 i=1

exts

actions

ops cleanup

0xffffffff40000000 (valid)
0x40 (invalid)

Heap Spraying

0xffffffff40000000 (valid)

actions

ops cleanup

Assumption: UAF/OOB objects are controlled by attackers using heap spraying

Problem: UAF/OOB objects cannot be controlled by fuzzer alone

obj1 obj2

cp->perfect

i=0 i=1

exts

actions

ops cleanup

0xffffffff40000000 (valid)
0x40 (invalid)

Heap Spraying

0xffffffff40000000 (valid)

actions

ops cleanup

Symbolic Execution

Symbolic execution is a program
analysis technique that uses
symbolic value instead of a
concrete value during program
execution.

actions+i must be a valid
memory address AND
actions[i] != 0

Take the true branch

actions+i is a valid memory
address OR actions[i] == 0

Take the false branch

Problem: Fuzzer was blocked by kernel panic or complicated constraints

Two modes of operations - Open vs Fixed bugs

Upstream - open bugs

SyzScope package static analysis and symbolic execution to
explore high-risk impacts behind the low-risk impact.

Downstream - fixed bugs

SyzScope package fuzzing, static analysis and symbolic execution

to explore high-risk impacts behind the low-risk impact.

Workflow - Fixed bugs & Open bugs

Open Bugs

Fixed Bugs

Fuzzing - Restricted fuzzing

1. Provides more UAF/OOB contexts
to symbolic execution

2. Does not stop at the first impact

3. Conservative mutating strategy

Ori PoC: ioctl(1, 2, 2);

ioctl(1, 2, 2);

ioctl(1, 2, 4);

UAF write

Double Free

Double Free

sendmsg(1,2,3)

Fuzzing is only enabled for cases with patches

mutate

mutate

WARNING

Fuzzing - New contexts verification

Vulnerable
Kernel

Patch
Trigger
the new
impact

Abbandon

Valid new
context

nothing triggered

PoC for
new buggy

context

PoC for
new buggy

context

Fuzzer - Impact aware fuzzing

We use Syzkaller as our fuzzer

1. Let Syzkaller catch multiple bug
impacts along one execution path
and pick up the most high-risk one
(eg. WARNING->UAF Write)

2. Not only does it have code
coverage feedback, but we also
added impact feedback.

We also consider a seed that triggers a new impact
as an interesting candidate, and further mutate it

Sending test case
to executor

Test case A

Symbolic Execution - Architecture
Our symbolic execution starts at bug’s first KASAN report

Set a
breakpoint at
kasan_report

angr

symbolize

set the registers

Dynamic retrieve
memory content
when need it

Symbolic Execution - Impacts identification

High-risk impacts:

● UAF/OOB Write

● Invalid Free

● Control flow hijacking

● Arbitrary/Constrained value write

● Arbitrary/Constrained address write

call rax

mov [rbx], rax

mov rdi, xxx
call _kfree

mov [rbx], rax

mov [rbx], rax

Dataset

Syzbot discovered mainly 8 types of bugs

● KASAN bug: use-after-free, out-of-bounds, double
free

● Kernel assertion bug: WARNING
● Kernel assertion bug: INFO
● Kernel assertion bug: BUG
● General protection fault: GPF

Evaluation

Experiment setup

● 1173 valid bugs

● All experiment are conducted in Ubuntu-18.04 with 1TB memory and
Intel(R) Xeon(R) Gold 6248 20 Core CPU @ 2.50GHz * 2

● 3 hours kernel fuzzing, and 4 hours symbolic execution

Overall results
High-risk

bug found
OOB/UAF

write

Arbitrary

address write

Constrained

address write

Arbitrary

value write

Constrained

value write

Control flow

hijacking

Invalid

Free

Fixed
GPF and BUG 9 164 5 26 19 25 1 3

WARNING

and INFO 19 67 10 13 51 27 10 2

UAF and

OOB Read 85 1749 142 113 531 192 28 1

Open
GPF and BUG 4 2 0 0 2 0 1 0

WARNING

and INFO 8 151 19 2 13 15 11 0

UAF and

OOB Read 22 242 2 21 38 52 0 2

Total 147 2375 178 175 654 311 51 8

Evaluation - Fuzzing

Fuzzing alone discovered 61 high-risk bugs (53%) with 167 impacts (5%).

All impacts found by fuzzing are UAF/OOB write and invalid free.

● The average number of impacts

fixed section (with patches) 27.9 vs open section (without patches) 16.9:

This is because the open bugs did not go through the fuzzing.

● Buggy contexts in fixed section : 1.37 contexts

Buggy context in open section: 1 context

Evaluation - Symbolic execution

● 61 bugs that were turned into high-risk by fuzzing alone, the rest 52
bugs in fixed section can only be turned into high-risk by symbolic
execution.

● Symbolic execution discovered 95% impacts including control flow
hijacking, arbitrary address write.

Disclosure

We submitted 32 high-risk bugs since Linux kernel v4.19 to CVE
maintainers and 8 of them have been assigned CVE, the rest ones are
still pending for responses.

● CVE-2021-33034
● CVE-2021-33033
● CVE-2019-25044
● CVE-2020-36386
● CVE-2020-36385
● CVE-2018-25015
● CVE-2020-36387
● CVE-2019-25045

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-33034

Publish

Our paper will appear on USENIX security 2022.

Q&A

Thank you for listening, SyzScope is now open
source on:

https://github.com/seclab-ucr/SyzScope.git

