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Abstract—Continuous fuzzing has become an integral part
of the Linux kernel ecosystem, discovering thousands of bugs
over the past few years. Interestingly, only a tiny fraction of
them were turned into real-world exploits that target downstream
distributions, e.g., Ubuntu and Fedora. This contradicts the
conclusions of existing exploitability assessment tools, which
classify hundreds of those bugs as high-risk, implying a high
likelihood of exploitability. Our study aims to understand the
gap and bridge it. Through our investigation, we realize that
the current exploitability assessment tools exclusively test bug
exploitability on the upstream Linux, which is for development
only; in fact, we find many of them fail to reproduce directly
in downstreams. Through a large-scale measurement study of
230 bugs on 43 distros (8,032 bug/distro pairs), we find that each
distro only reproduces 19.1% of bugs on average by running the
upstream PoCs as root user, and 0.9% without root. Remarkably,
both numbers can be significantly improved by 61% and 1300%
times respectively through appropriate PoC adaptations, neces-
sitated by environment differences. To this end, we developed
SyzBridge, a fully automated system that adapts upstream PoCs
to downstream kernels. We further integrate SyzBridge with
SyzScope, a state-of-the-art exploitability assessment tool that can
identify high-risk exploit primitives, e.g., control flow hijack. Our
integrated pipeline successfully identified 53 bugs originated from
syzbot that are likely exploitable on downstream distributions,
surpassing the mere 5 bugs that were turned into real-world
exploits among 5,000 upstream bugs from syzbot. Notably, to
validate the results, we successfully exploited 5 additional bugs
that were previously not known to be exploitable publicly.

I. INTRODUCTION
Linux kernel security has always been a popular area of

great interest for security researchers. As an alternative way
to help improve kernel security, exploiting Linux kernel is
encouraged by influential organizations such as Google [10]
and ZDI [26]. Numerous studies have specifically targeted the
exploitability of the kernel, introducing innovative techniques
for kernel exploits [53], expanding the attack surface [34], and
enhancing the stability of exploits [68]. However, not every bug
is exploitable. It is well-known that bugs that have high-risk
primitives are likely to be exploited [70], e.g., use-after-free
write, double-free.

In recent years, the use of continuous fuzzing, e.g.,
syzbot [40], has exposed thousands of Linux kernel bugs to
the public. With the improvements of kernel fuzzing tech-
niques [64], [31], [41], [69], [35], [63], even more bugs may
be exposed in the future. Considering the enormous volume
of kernel bugs, conducting manual inspections to assess the
exploitability of every single one is unrealistic. This led to
the development of bug assessment techniques [70], [52],
[32], [66], [45], which attempts to classify bugs based on
some notion of “exploitability”, e.g., uncovering high-risk
exploit primitives. The automated exploitability assessments
have successfully identified many exploitable bugs. Notably,
SyzScope [70] has classified 183 bugs out of 1,170 fuzzer-
exposed bugs as high-risk. KOOBE [32] has managed to
generate 6 new exploits for previously non-exploitable bugs.
Despite these promising outcomes, the occurrence of real-
world Linux kernel exploits remains surprisingly rare. Indeed,
syzbot [40] has reported only 5 exploitable kernel vulnerabil-
ities originating from upstream kernel bugs since 2017. How-
ever, our subsequent evaluation revealed that we discovered
over 50 exploitable kernel vulnerabilities across distros such as
Fedora, Ubuntu, Debian, and SUSE. This discrepancy prompts
us to investigate the missing step that creates a gap between the
relatively low number of real-world exploits and the promising
results produced by assessment tools.

We found that prior solutions assessed exploitability against
the upstream kernel, i.e., Linux mainline, only, without ver-
ifying whether the results will transfer to the downstream
kernels [70], [32]. In practice, the upstream kernel is used for
development only and it is the downstream Linux distros that
are used in the real world. In other words, prior solutions im-
plicitly assumed PoCs generated by fuzzing upstream kernels
seamlessly apply to downstream distros. Our study questions
the assumption.

In our large-scale measurement study at §V-B, we exam-
ined 230 upstream kernel bugs across 42 downstream distros.
The findings revealed that a significant majority of the up-
stream kernel bugs cannot even be reproduced when subjected
to exploitability assessment tools in real-world downstream
distributions. Remarkably, out of the 183 high-risk bugs iden-
tified by SyzScope, only 39 of them were triggerable on
at least one of the following Linux distributions: Ubuntu,
Fedora, Debian, and SUSE. Moreover, only 2 bugs could be
triggered by a normal user, which is a necessary condition
for exploitable bugs. These findings demonstrate that existing
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exploitability assessment tools have limited real-world impact,
thereby explaining why they haven’t significantly increased the
number of real-world exploits.

We hypothesize that it will likely not work by simply re-
executing the upstream PoC against a downstream, due to the
differences between production kernels and development ker-
nels. In this paper, we are motivated to answer two questions:
(1) why an upstream PoC would fail against a downstream
kernel and how prevalent it occurs and (2) whether the bug
can be reproduced without requiring high privileges.

To answer the two questions, we perform a comprehensive
analysis on a smaller-scale dataset, aiming to gain insights into
the underlying factors that lead to unsuccessful bug reproduc-
tion on downstream distros. Initially, we hypothesized that the
primary reason for these failures would be discrepancies in the
kernel code context between upstream and downstream. For
instance, this could lead to deviations in the execution trace,
as observed in certain user-space software [36]. However,
following our investigation, we were surprised to discover
that this was only a rare occurrence. In reality, the failure to
reproduce these bugs stems from various factors, which we
collectively refer to as environment differences.

Intriguingly, based on our analysis, a significant portion of
these differences can be mitigated by making adjustments to
the PoC. However, trivial solutions like blind fuzzing/mutating
are insufficient for completing such adjustments. For example,
one major reason for this failure is the absence of critical
kernel modules, which are compiled but not loaded. The
common approach of using modprobe to load a module
requires root privileges, making it impractical to be exploited.
Additionally, a typical downstream distro kernel like Ubuntu
consists of approximately 6,000 modules, making it impossible
to blindly test and determine the missing ones. To address
this challenge, we employ a unique approach. It extracts PoC
execution traces from upstream and downstream, carefully
identifies their divergences, and pinpoints the missing kernel
modules. Furthermore, we utilize static analysis and fuzzing
techniques to discover a special kernel internal module loading
mechanism. This mechanism is then leveraged to load the
target missing module without requiring root privileges.

Therefore, to better assist and integrate with conventional
exploitability assessment tools, we further develop SyzBridge,
an automated system that diagnoses the failures of a PoC on
a given downstream distro and attempts to make appropriate
changes to the PoC. The objective is twofold: (1) to success-
fully reproduce the bug in a downstream kernel, and (2) to
reduce the privilege requirement. We envision that SyzBridge
would not just contribute to solving the bug triggerability
issues, but also bring another dimension to the existing tools,
making the exploitability assessment results have more real-
world impacts.

The evaluation results are promising. Using SyzBridge on
the same dataset of 230 upstream bugs (8,032 bug/distro pairs),
we improved the number of triggerable bugs by 61% and
the number of normal-user-triggerable bugs by 1300%. To
demonstrate the real-world impact of our results, SyzBridge
integrates with SyzScope – a state-of-the-art exploitability
assessment tool, in the pipeline. The integrated pipeline an-
alyzed 282 upstream high-risk bugs and revealed 53 bugs that

are likely exploitable by normal users on some downstream
distros, compared to just 5 that were considered as such (with
previously-assigned CVEs). We sampled additional 5 bugs
from the 53 likely exploitable bugs to develop kernel exploits.
Those exploits demonstrate the efficiency of the pipeline in
exploitability assessment. Notably, one of the exploits is an
end-to-end exploit against the latest Ubuntu distro, which
resulted in one additional CVE. In summary, this paper makes
the following contributions:

• We introduced a novel and previously-neglected exploitabil-
ity assessment dimension to the Linux kernel ecosystem.
The dimension addresses downstream bug triggerability
issues and equips existing exploitability tools with a new
capability to work on real-world downstream distros.

• We developed SyzBridge, an automated system designed to
enhance the chances of reproducing bugs on downstream
distros by making adaptations to the original upstream PoC.
Our system successfully reproduced 61% more bugs, many
of them don’t require root privileges. To facilitate tool
integration and future research, we released our source code
at https://github.com/seclab-ucr/SyzBridge

• Our system has been designed to facilitate integration into
the existing exploitability assessment tool pipe. The pipeline
reveals 53 likely exploitable bugs on downstream kernels,
compared to only 5 that were previously known.

II. BACKGROUND AND OVERVIEW

A. Linux Ecosystem

As an open-source operating system, Linux kernel is widely
reused and customized, forming an ecosystem with multi-
ple concurrent branches under development and maintenance.
Linux mainline is a development-only branch that is considered
the upstream where both new features and bug fixes occur.
Whenever the Linux mainline reaches a milestone, e.g., major
update has been published, it is forked into either a stable or a
long-term-support (LTS) branch. In such branches, developers
focus on improving stability and fixing bugs without incor-
porating new features. The stable and LTS branches are then
relied upon by downstream kernels which are actually used in
production (also called Linux distributions or Linux distros),
e.g., Ubuntu [22], Debian [4], Fedora [6], Suse [17].

Downstream kernels diverge from the mainline and even
stable/LTS branches for several reasons. It is obvious that
a downstream kernel that follows stable/LTS for its entire
lifetime will be different from mainline, increasingly so as
more and more features go into mainline (e.g., Debian and
Ubuntu). Furthermore, a downstream kernel will customize the
kernel on top of the stable/LTS for a variety of reasons [23],
[5]: supporting specific user-space features (e.g., Debian pack-
aging) and out-of-tree drivers, enabling or disabling certain
kernel features or modules (via kernel configs), cherry-picking
important patches (e.g., security) from mainline that are not
(yet) in stable/LTS.

B. Syzbot

As mentioned, syzbot is a continuous kernel fuzzing plat-
form operated by Google, where bugs are discovered and
reported on a public dashboard [40]. It targets primarily
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Linux mainline with most of its fuzzing instances. It also has
limited fuzzing instances on several old LTS branches, e.g.,
v4.14.y [19]. For every newly discovered bug, syzbot aims to
generate PoCs that assist developers in reproducing the same
bug for testing purposes.

The way syzbot operates is that it compiles the latest
kernel (mainline or LTS) from the public git repository on
a daily basis and fuzzes it for roughly a day, and repeats. In
other words, when fuzzing mainline, it can effectively find
bugs as they are introduced during the development process
– this is why it dedicates most of the fuzzing resources to
mainline. Moreover, to achieve high coverage, when compiling
the kernel, syzbot enables the most commonly used options
(e.g., translating into kernel features) in the config file as
subject to certain conflicts [18]. It also enables a number
of sanitizer-related options [27], [39], [28] to instrument the
kernel and facilitate bug detection at runtime. Finally, syzbot
always fuzzes the kernel with test cases that run as root
user, allowing the fuzzer to discover bugs that would require
privileges to trigger.

C. Bug exploitability

Bug exploitability is contingent upon certain high-risk
primitives. To the best of our knowledge, exploitable Linux
kernel vulnerabilities require at least one high-risk primitive.
As noted by SyzScope [70], high-risk primitives include
various memory write primitives, e.g., use-after-free write
and out-of-bounds write, as well as memory free primitives,
e.g., arbitrary free and double free. Additionally, control flow
hijacking is also a well-known high-risk primitive.

Exploitability assessment tools like KOOBE [32] rely on
discovered high-risk primitives (e.g., out-of-bounds write) to
overwrite critical kernel data, thereby generating concrete ex-
ploits. SyzScope assesses bug exploitability by elevating low-
risk primitives (e.g., memory read and non-security primitives)
to high-risk primitives. Both tools have achieved noteworthy
results. For instance, KOOBE successfully generated 6 new
exploits from 4 Linux upstream bugs, while SyzScope elevated
183 out of 1,173 upstream low-risk bugs to high-risk bugs.

Despite the notable success of exploitability assessment
tools, the impact on the number of real-world exploits appears
to be limited. As mentioned previously, these tools primarily
focus on the upstream development kernel and rely on original
upstream PoCs without any adaptation. In fact, a lot of
downstream exploitable bugs cannot be directly triggered by
the upstream PoC, thereby neglecting their real-world impacts
on downstream distribution kernels. We will showcase in the
next section.

D. Motivating Example

In order to highlight the critical gap in existing exploitabil-
ity assessment tools, we present a real bug [9] from syzbot as
an illustrative example. This bug exhibits a high-risk out-of-
bounds write as an initial primitive, making it likely to be
transformed into a real-world vulnerability.

However, the current exploitability assessment tools are
incapable of analyzing this bug because it does not reproduce
on the target Ubuntu kernel even when running the original

1 void km_state_notify(struct xfrm_state *x, const struct
km_event *c)

2 {
3 struct xfrm_mgr *km;
4 rcu_read_lock();
5 list_for_each_entry_rcu(km, &xfrm_km_list, list)

// Getting km from the global list xfrm_km_list
6 if (km->notify)
7 km->notify(x, c);
8 rcu_read_unlock();
9 }

10

11 void xfrm_register_km(struct xfrm_mgr *km)
12 {
13 spin_lock_bh(&xfrm_km_lock);
14 list_add_tail_rcu(&km->list, &xfrm_km_list);
15 spin_unlock_bh(&xfrm_km_lock);
16 }
17

18 #define list_for_each_entry_rcu(...) \
19 for (__list_check_rcu(dummy, ## cond, 0), ...) \

1

2

3

pfkey_add

km_state_notify

pfkey_send_notify

1

2

3 xfrm_send_state_notify3

Ubuntu kernel Upstream kernel

pfkey_add

km_state_notify

N vulnerable functionNunrelated function

. . . . . .

Figure 1: Motivation example

PoC with root privileges. Fortunately, SyzBridge managed to
diagnose the root cause and generate a new PoC specifically
tailored for the Ubuntu kernel. Without SyzBridge, nobody re-
alizes the potential exploitability of this upstream bug, at least
according to publicly available information. We developed an
end-to-end exploit for this 1-day bug in the latest Ubuntu
kernel at the time and received credit from the community.
To address ethical concerns, we provide a detailed account of
how we handled this exploit and responsibly reported it to the
developers in §VI-D.

This vulnerability occurs in kernel netfilter.
km_state_notify in Figure 1 is the critical function that
invokes the corresponding netfilter. This invocation occurs
at line 7 through the xfrm manager km. The value of km is
assigned at line 5 from a global linked list, xfrm_km_list.
Note that list_for_each_entry_rcu iterates the
global linked list, xfrm_km_list, and invokes the correct
notify() function. However, this global linked list must
be initialized before being used by km_state_notify.
The initialization process is depicted at line 14 within the
xfr_register_km function. In the upstream kernel, this
initialization function is automatically called during the kernel
booting process when the xfrm_user module is loaded.
On the other hand, the default configuration of the Ubuntu
kernel does not load the xfrm_user module, resulting in
the initialization function not being completed, and eventually
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causing the bug cannot be reproduced.

As shown in Figure 1, km_state_notify() invokes an
indirect call at line 7. If we compare the trace from Ubuntu
with the trace from upstream kernel, we note that the callees
are distinct. This is because Ubuntu kernel only has the default
modules pfkey for notify at this moment, which causes it
to call into the common function pfkey_send_notify().
SyzBridge extracts the traces and automatically locates the un-
matched trace node (node 3) and reveals the missing function
xfrm_send_state_notify() (the technical details will
be discussed in §IV-C). SyzBridge locates the corresponding
module to be xfrm_user, and loads it through modprobe to
trigger the bug on Ubuntu, finally the PoC successfully triggers
the bug.

However, the standard method of loading modules through
modprobe requires root privileges, making it impractical for
exploiting a vulnerability. SyzBridge uses a unique technique
that leverages a kernel internal mechanism to seamlessly load
the target module from an unprivileged user (more details
will be discussed in §IV-D). In addition to downgrading the
privilege for module loading, SyzBridge also automatically
downgrades the privilege of using network modules by iden-
tifying kernel security checks and applying user namespaces
(more details will be discussed in §IV-E). As a result, the
vulnerability can now be successfully triggered on Ubuntu with
normal privilege

Moreover, SyzBridge seamlessly integrated SyzScope, es-
tablishing a comprehensive pipeline for assessing bug ex-
ploitability on downstream distro. By examining the analysis
results obtained from this pipeline, we identified several of the
most useful capabilities and utilized them to construct the final
exploit.

III. EXPLORATORY EXPERIMENT

In order to understand why upstream bug PoCs cannot re-
produce the same bug on downstream, we set up an exploratory
experiment.

A. Dataset & Experiment Setup

Syzbot bugs. We choose all KASAN bugs that were found
against Linux upstream on syzbot and had C PoCs within
the time frame of Jan 1st 2020 to Dec 31th 2022. This leads
to 225 bugs and corresponding C PoCs. To complement the
dataset, we also find 5 CVEs that originated from syzbot in the
same time frame that had been proven exploitable according
to the public response of kCTF [10], [13]. We realize that 3 of
the CVEs are already covered in the upstream KASAN bug;
interestingly, the other 2 are also KASAN bugs but are reported
in other kernel targets (e.g., long-term-support), which had C
PoCs as well. In total, we have 230 bugs from syzbot.

Downstream distros. We use the four popular distribu-
tions [12] as our distro dataset: Ubuntu, Fedora, Debian, and
Suse. We gathered their major releases that cover Jan 1st, 2020
to Nov, 25th 2022, as shown in Table VII. For each syzbot
bug, we pick the potentially affected major release kernels for
testing, i.e., those that satisfy the two requirements: (1) The
bug has not been patched in the downstream kernel. (2) The
major release’s corresponding branch is still under support at

Table I: Distro Dataset for Manual Investigation

Distro Major Release Code Name Kernel Version Released Date

Ubuntu

Ubuntu-20.04 focal 5.4.26 Apr 23 2020
Ubuntu-20.04.1 focal 5.4.42 Aug 6 2020
Ubuntu-20.04.2 focal 5.4.65 Feb 4 2021
Ubuntu-20.04.3 focal 5.4.81 Aug 26 2021

Fedora

Fedora-32 32 5.6.6 Apr 28 2020
Fedora-33 33 5.8.16 Oct 27 2020
Fedora-34 34 5.11.12 Apr 27 2021
Fedora-35 35 5.14.10 Nov 2 2021

Debian

Debian-10.4 buster 4.19.118 May 9 2020
Debian-10.5 buster 4.19.132 Aug 1 2020
Debian-10.6 buster 4.19.146 Sep 29 2020
Debian-10.7 buster 4.19.160 Dec 5 2020
Debian-10.8 buster 4.19.171 Feb 6 2021
Debian-10.9 buster 4.19.181 Mar 27 2021
Debian-10.10 buster 4.19.194 Jun 19 2021
Debian-10.11 buster 4.19.208 Oct 9 2021

Suse SLE-15-SP2 15 5.3.18-22 Jul 21 2020
SLE-15-SP3 15 5.3.18 Jun 22 2021

Figure 2: Exploratory Experiment Workflow

the time when the bug is found (see Table VII for details).
Please note that even though some major releases are now out
of support, they were still under support when the bug was
discovered (e.g., a Jun 2020 bug on Ubuntu-20.04). In other
words, it includes a retrospective analysis of past data. In total,
we gathered 43 distros and made 8,032 bug/distro pairs.

Experiment setup. In order to capture KASAN bugs
(all of the selected bugs are found by KASAN detec-
tors), we enabled CONFIG_KASAN in the distro kernel
configuration. In addition, we enable a few other ker-
nel debug features such as CONFIG_FAULT_INJECTION,
CONFIG_DEBUG_KERNEL, etc., as they are also used by
syzbot. Besides them, we keep the remaining options the same
as in the original configuration to make the compiled kernel
as close to the end-user version as possible.

As shown in Figure 2, we launch a separate virtual machine
for each valid distro version for a given bug/PoC. Initially, we
run the PoC as the root user inside the VM. If the bug is
triggered successfully, we then run the PoC again as a default
and unprivileged user if the first step succeeds (triggered the
bug), and record any failures during either step. We give 600
seconds for each PoC to run. We ran SyzBridge on Ubuntu-
18.04 with 1TB memory and Intel(R) Xeon(R) Gold 6248 20
Core CPU @ 2.50GHz * 2.
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B. Exploratory Experiment Results

After running 230 PoCs against 43 distros, we discovered
only a fraction of bugs are triggerable by the root user across
all the distros — 55, 58, 33, and 29 out of 230 total for
Ubuntu, Fedora, Debian and Suse respectively. Furthermore,
only 2, 3, 2, and 1 (0.4% - 1.3%) are triggered directly by an
unprivileged user. Among 5 CVEs that originated from syzbot,
4 of them were triggered by root, and none of them were
triggered by an unprivileged user. Note that we consider a bug
to be successfully triggered on a distro vendor as long as it is
triggered on one major release from the vendor.

The exploratory experiment results indicate only a small
portion (19.1% on average across the four distros) of upstream
bugs actually affect downstream distros. Surprisingly, there
is an extremely low percentage of bugs (0.9% on average
across the four distros) that are triggerable by an unprivileged
user. It suggests that most fuzzer-exposed bugs do not have a
serious impact on downstream kernels. To determine whether
the results represent the truth, we sampled some of the failed
cases to conduct a manual root cause analysis.

C. Manual Investigation Dataset & Setup

We randomly picked 50 KASAN bugs that failed to repro-
duce on target distros or only reproducible by root users. We
limit the bugs to the time frame from 2020 to 2021 according
to their first discovery date on syzbot [40]; this is because
they are more likely to be patched and can ease the manual
investigation. We then pick the corresponding major releases
of the four distros that were released within that time frame.
The details are shown in Table I.

For each bug, we limit the testing for each vendor to a
single kernel release — the most recent release right before
the bug was found. For example, if a bug was reported on July
1st 2021, then Ubuntu-20.04.2, Fedora-34, Debian-10.10, and
SLE-15-SP3 from Table I are chosen for testing. In total, this
leads to 200 bug/distro pairs.

We first run the PoC as root user on the target distro. If
the bug fails to reproduce on a target distro, we manually
analyze the root cause of this failure. For those bugs that can
reproduce with root, we rerun the PoC as an unprivileged user
to observe the triggerability again. If they cannot trigger the
bug by an unprivileged user, we start another manual analysis
to understand the privilege requirement.

D. Manual Investigation Results

Among these 200 bug/distro pairs, 120 of them do not
affect the target distro. This is because the buggy commits, i.e.,
the commits that introduce the bugs (as given in the Fixes tag
of a patch [16]), simply do not exist in the downstream kernel.
For the remaining 80 pairs where the downstream kernels do
contain the buggy code, we list the results in Table II. By
simply running the original upstream PoC, we observe only
18 out of 80 bug/distro pairs were successful across all four
vendors, i.e., the PoC manages to trigger the bug as root. In
contrast, none of them are triggered by unprivileged users. We
then conduct a manual analysis to understand the root causes of
(1) the remaining 62 pairs where the PoCs failed to trigger as
root, and (2) the 18 pairs that did trigger successfully with root

but not with unprivileged users. The results are summarized
below.

1) Necessary logic missing: We found 41 out of 62 pairs
failed because the necessary logic (e.g., functions) is missing.
For example, the buggy commit exists but the function in-
volved in the buggy commit is not compiled in the downstream
kernel. Note that this is different from the case where the buggy
commit does not exist (which we already filtered earlier).
However, the implication is the same — there is no adaptation
possible to the PoC to trigger the bug.

2) Code context change: We noticed 1 out of 62 pairs
failed because of the downstream kernel code context change.
Specifically, the downstream kernel had a check that was not
present in the upstream such that the PoC needs to be adapted
slightly (changing a constant) to trigger the bug. In this paper,
we deliberately exclude such cases from our scope because: (1)
there is only a limited number of such cases (also supported
in our larger-scale experiment later). (2) such code context
change can be addressed by prior solutions using fine-grained
program analysis techniques [45], [36].

3) Environment Requirements Unsatisfied: In the remain-
ing 20 out of 62 pairs, we found the root causes are inter-
estingly not related to the core logic of the bug (e.g., code
context changes). Instead, they are due to what we consider
environment differences in the downstream OS. In general, we
categorize them into three types of environment differences.
Note that a PoC can fail due to more than one reason.

R1: Preparation steps failing. We discovered 3 pairs
failed due to the lack of debugging devices in target dis-
tros. For example, /dev/raw-gadget [24] is a low-level
interface for the Linux USB Gadget subsystem. In syzbot,
such preparation steps always occur in a specially marked
part of the PoC (at the beginning) and therefore easy to
recognize. It is not supposed to be included in a production
distro kernel and indeed we do not enable it when we compile
the downstream kernels. When a PoC tries to open this device
on the downstream OS, it always fails and terminates. This is
not a problem for the upstream kernel because such debugging
features are always enabled in the kernel config.

R2: Distro background noises. There are 13 pairs that
failed due to distro background noises. These noises come
from the daemon processes that are running all the time in the
background, e.g., system services. This is expected because
these downstream OSes are designed to be functional. In
contrast, the upstream Linux that syzbot uses is minimally
functional with few default processes that are long-running.
These background processes cause two types of issues pre-
venting the bug from being triggered.

• Distro resources needed by PoCs are occupied by other
processes. For example, loop devices [11] provide a block
device for a filesystem image to be mounted (e.g., .iso image).
We observe that loop devices on distro images are often
occupied by other processes.

• Race condition failed due to noises. With minimal
background processes, an upstream kernel can easily trigger a
race condition bug, sometimes in a single execution (without
looping at all). This result tricks the fuzzer into thinking that
the bug is not really a race condition bug, so the fuzzer failed
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Table II: Breakdown of investigation results

Distro Triggered by R1 R2 R3 R4

root normal

Ubuntu 5 0 2 4 4 2

Fedora 5 0 0 2 2 4

Debian 3 0 1 4 2 0

Suse 5 0 0 3 2 2

to mark it as such and will not repeat the race in the PoC.
However, the same PoC faces much more background noise
from long-running processes in downstream OSes and a single
race almost always fails.

R3: Necessary kernel modules not loaded. We noticed 10
pairs failed because the bug required specific modules that are
compiled and included in the kernel, but not loaded by default.
Note that this is different from the previous reason “Necessary
logic is missing” where the necessary code is simply not
present or compiled, causing no chance of triggering the bug.
In contrast, if the modules are included in the kernel but are not
loaded yet, there is technically still a chance to trigger the bug
by loading the modules. In other words, the true attack surface
of downstream kernels needs to account for the modules that
are loadable on demand, especially those that can be loaded
by an unprivileged user (which we discuss in §IV-D).

4) Privilege Requirement: In order to understand how
privilege plays a role in the bug-triggering process, we inves-
tigate the root causes that prevent a non-privileged user from
triggering the bug successfully.

R4: Kernel security checks. In Linux kernel, each process
has its own cred struct representing its privileges, and the
security checks are all related to the fields defined in this
structure. Generally, there are two common types of checks:
uid and gid checks. A uid and gid represent user id and
group id the process is running as (there are also euid and
egid, etc. and we refer to them generally as uid and gid).
The highest privilege levels for uid and gid are called root
(constants of zero) in Linux.

The other type of check is capability checks. Capabilities
are finer-grained compared to uid and gid where privileges
are divided into smaller units that can be enabled or disabled
independently for each process, e.g., CAP_NET_ADMIN giving
a process the privilege to use raw sockets. Figure 3 from case
study is showing a case that CAP_NET_ADMIN check fails
because the calling process does not have the corresponding
capability.

When syzbot fuzzes the upstream kernel, the PoC process
runs as root and is granted every capability and therefore has
no problem passing these checks. However, running such a
PoC with an unprivileged user on downstream OSes will fail
to trigger the bug because of these checks.

IV. SYZBRIDGE

In order to facilitate exploitability assessment on down-
stream kernels, it is crucial to have a system that not only

addresses individual triggerability issues but also possesses the
capability to seamlessly integrate with different exploitability
assessment tools. With this in mind, we have designed and
implemented SyzBridge, an end-to-end solution that takes
an upstream PoC and automatically assesses its triggerability
in downstream kernels. SyzBridge encompasses a range of
fully automated workflows, including kernel deployment, bug
reproduction, and crash detection.

The core functionality of SyzBridge is implemented
through approximately 8,000 lines of Python code, comprising
all the essential components required for bug assessment and
subsequent analysis. It consists of an upstream bug crawler, vir-
tual machine management, Proof of Concept (PoC) handlers,
and various plugins (for adaptations).

To address failure reasons R1 to R4, we have devised and
implemented individual plugins, totaling approximately 4,000
lines of code, to adapt to each specific failure reason. These
plugins ensure that SyzBridge effectively handles the identified
challenges. We describe them in detail below.

A. Environment Adaptation for Failed Preparation Steps.

As mentioned in R1, syzbot PoCs encode a variety of
preparation steps. This is because different kernel functionali-
ties may require additional setup processes. To correctly fuzz
a particular kernel functionality (e.g., USB, WiFi), syzkaller
needs to prepare the fuzzing environment first, and some of the
preparations require additional interfaces that the production
kernels do not have. For example, to effectively fuzz kernel
USB functionality, the syzbot kernels are compiled with the
interface /dev/raw-gadget exposed to userspace, so that
it is possible to provide simulated input from a fake USB
device. Of course, not every PoC actually requires such an
environment, and it is highly dependent on whether the sub-
sequent syscalls (beyond the preparation steps) in fact interact
with the related functionalities. Note that when syzkaller tries
to generate a PoC, it has a procedure to minimize the test
case. However, it appears to be insufficient in minimizing
the preparation steps. As a result, the unnecessary preparation
steps would be kept in the final PoC, which would fail on a
downstream OS that does not have such debugging interfaces.
To adapt such PoCs on a downstream OS, we perform our own
minimization on the preparation steps. In short, we iteratively
disable existing preparation steps and find the minimal steps
that are actually necessary for the bug triggering.

B. Environment Adaptation for Background Noise

As mentioned in R2, background noises often come from
daemon processes and services. These processes are long-
running in the background, and constantly compete for re-
sources with other programs (e.g., the PoC). Unfortunately,
some daemon processes and services even have higher priority
— they execute earlier during the boot process. As a result, it
is difficult, if not impossible, for the user programs to win the
resources. If these pre-occupied resources are essential to the
PoC, the bug would not be triggered. For the purpose of testing
bug triggerability, we simply adapt the PoC to force the kernel
to give up the resources we want from other processes. For
example, a loop device is essential for mounting a file system
before bug triggering. But most loop devices are occupied
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by background processes on many distro OSes. If we find the
designated resources are all busy, we force the kernel to release
them (e.g., unmount) and then continue our PoC.

Regarding the race condition issue, as we mentioned, a
bug is fundamentally a race condition bug but syzbot failed
to recognize it and incorrectly labeled the PoC as non-repeat,
because of less background noise in the upstream Linux used
by syzbot. To mitigate this problem, we treat every bug as a
potential race condition bug. If a PoC is running as a single
process, we launch multiple PoC processes (i.e., 6, the number
of processes that syzbot usually use for race condition bugs) to
make them collide with each other. Furthermore, we adapt the
PoCs to always run in a loop increasing the chance of winning
the race (with a timeout of 600 seconds).

C. Environment Adaptation for Module Loading

As mentioned in R3, due to the fact that downstream
kernels are often compiled with many individual loadable
kernel modules, they have to be loaded before the PoC can
run. In theory, as root user, we can simply forcefully load
all available kernel modules in downstream as an adaptation.
However, as we will discuss later in §IV-D, it is beneficial to
pinpoint the exact module(s) so we can later try to load these
modules without being root. And there are thousands of kernel
modules in downstream kernels, which makes it infeasible to
test every single possible combination.

1) Pinpointing explicitly dependent but missing modules:
We denote the “explicitly dependent but missing modules” in
downstream kernels as Depexp. They represent modules that
are exercised by a PoC when executed in the upstream kernel,
but are not loaded in downstream.

We first collect the complete function-level kernel execu-
tion trace (via ftrace [8]) of the PoC when executed in
both the upstream OS (reference trace) and the downstream
OS (target trace). Each trace includes all the syscalls and the
corresponding internal kernel functions. We then look up the
kernel module to which each internal kernel function belongs.
Specifically, we look up the module name by the corresponding
source file name from the Makefile [48].

Our next step is to check which of these modules can be
loaded in the downstream. At this point, we check each module
in the set in terms of its compilation status. There are three
possibilities: 1. The module is not compiled. 2. The module is
compiled into the kernel core (built-in module). 3. The module
is compiled as a loadable add-on (loadable module).

In the first two cases, we will discard the module from
Depexp because there is either no way or no need to load
the module. Only in the third case, we will retain the mod-
ule, subject to further minimization (as will be discussed in
§IV-C3).

2) Pinpointing implicitly dependent but missing modules:
We denote the “implicitly dependent but missing modules” in
downstream kernels as Depimp. They represent the modules
whose code did not show up in the execution trace but the
absence of them prevents the bug from triggering.

In the case study (Figure 3), we will show a case
where the global net_device linked list was queried by

the execution trace, but the code that inserts the object
to the linked list is conducted by the module initialization
logic in a separate process. For instance, the kernel function
register_netdevice is called to insert a network de-
vice into the global net_device linked list during device
initialization. The order of insertion does not matter because
each network device in the list is assigned a unique identifier,
ifindex. This unique identifier can be used to retrieve a
specific device. The size of the device linked list varies among
different distros but typically remains relatively small, usually
no more than a few dozen. By observing the execution trace,
we can only collect Depexp but not Depimp.

Our solution is to conduct a static analysis leveraging a
recent tool specifically designed for dependency analysis of
the kernel [42]. The existing analysis was originally designed
to identify, within a kernel module, how a piece of global
memory (e.g., global variable) read in one syscall is written
in another. However, in our case, we are only interested in
such dependencies across kernel modules. Nevertheless, the
methodology is similar. All we need to do is to identify global
variables that are read in one kernel module and written in
another. In addition to constraining the tool to “cross-module”
dependencies, we also constrain the modules that perform
write operations on the global variable to those that occur
in module_init functions. In other words, the write has
to happen as soon as the module is loaded. The constraint is
imposed because of the following reason: if a write operation
has to be triggered through additional syscalls, e.g., ioctl(),
it must have been included in the original upstream PoC,
rendering the module that contained the write operation an ex-
plicitly dependent module (instead of an implicitly dependent
one).

We conducted the dependency analysis on the upstream
kernel with allyesconfig to include as many kernel mod-
ules as possible. We then performed a final step of offline
manual analysis to determine what global variables are shared
across modules and which ones can cause a “read” module to
abort if the “write” module is not loaded. We finally identified
three different global linked lists that are most commonly
shared across modules, representing character, block, and
network device drivers. We therefore encode the knowledge
regarding their operations. Specifically, when we observe the
execution trace in the downstream kernel that performs any
“read” operation (e.g., linked list lookup), we will add a
corresponding “write” module that is compiled as a loadable
module into Depimp.

3) Module minimization: Now that we have both Depexp
and Depimp, we will then decide which ones are truly neces-
sary for the bug to trigger. The reason is that these “dependent”
modules are not necessarily “required”. For instance, there
are conditionally compiled code marked by #ifdef macros
which are enabled in upstream kernels but not downstream
ones. Such code may call into additional modules but is not
required for the bug to trigger. Implicitly dependent modules
may also not be “required” as the “read” module may not be
critical, e.g., when looking up the linked list fails, it may revert
to an alternative path and continue to trigger the bug.

Note that syzkaller already performed its own test case
minimization for PoCs after the bug was triggered. However,
syscall minimization is still different from module minimiza-
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tion. This is because syzkaller’s minimization operates at the
syscall level — it is possible that a syscall is absolutely
necessary to trigger a bug, but whether the syscall exercised
another module (through callbacks) is not of its concern. The
built-in minimization in syzkaller pinpoints the guilty syscalls
and rules out the unnecessary ones so that developers can better
understand the bug. Similarly, the minimization of required
modules helps us understand the requirement of the bug, and
its potential impact on downstream kernels. Yet, being able
to minimize the “required” modules for a PoC will improve
the odds of triggering the bug without the root privilege (see
§IV-D), as many modules do require it to load.

We implement the module minimization procedure in a
similar fashion to syscall minimization [21], except that we
add modules one by one as opposed to removing syscalls one
by one. We chose this because we find that in most cases the
number of “required” modules is actually much smaller than
the total number of modules in Depexp and Depimp.

D. Privilege Adaptation for Module Loading

As alluded to earlier, modules can require privileges
to load. A universal method to load a kernel mod-
ule is through the modprobe utility program, which in-
vokes the init_module() syscall. Unfortunately, the
init_module() function checks user’s initial names-
pace init_user_ns for a special capability called
CAP_SYS_MODULE. This capability is not present in an
unprivileged user’s initial namespace. Only the root user or
a user who has been granted this capability can execute the
init_module() syscall. If a bug requires additional mod-
ules, loading them through modprobe necessitates the root
privilege requirement. However, Linux kernel also provides an
inconspicuous way to load modules through kernel syscalls
by unprivileged users [14]. These modules can be loaded
automatically when certain syscalls such as socket() are
invoked. The xfrm_user module is not loaded in Ubuntu
by default, but can be loaded by an unprivileged user through
syscall(__NR_socket, 16, 3, 6);.

In order to discover all such kernel modules system-
atically, we identify a key internal kernel function named
request_module() that by itself does not have privilege
requirements. We find that there are hundreds of invocations
of request_module() scattered in the kernel. It is not
possible to manually analyze all invocations and construct con-
crete test cases that reach request_module(). Therefore,
we developed a guided fuzzer on top of syzkaller to generate
test cases automatically that can load modules by unprivileged
users.

Our basic idea is to constrain the syscall search space
to those that have a chance to reach request_module().
Naturally, we need a call graph analysis, which should resolve
indirect calls. To this end, we leverage MLTA [54] which is
a state-of-the-art static analysis tool specifically designed to
accurately resolve kernel indirect calls. In addition, we need a
different feedback mechanism than coverage because the same
request_module() invocation may actually correspond to
different modules being loaded, e.g., when the argument to
the function is different. Therefore, on top of coverage, we
additionally add the feedback of the actual module name that

Table III: Breakdown of module loading fuzzing results

Distro crypto fs net tty other Sum Total

Ubuntu 85 58 157 13 3 316 371
Fedora 69 47 106 11 3 236 272
Debian 97 52 132 11 7 299 361
Suse 99 52 145 15 0 311 465

is being loaded by instrumenting request_module(). If a
test case manages to gather new feedback in either metric, we
will put the test in the corpus.

Following the above setup, we performed an experiment
by fuzzing the latest version of the three distros, i.e., Ubuntu-
22.04, Fedora-36, Debian-11.4, and SLE15-SP3 separately for
three weeks (each with 16 CPU cores). In the end, we obtained
316 unprivileged loadable modules from Ubuntu kernel versus
236 in Fedora, 299 in Debian, and 311 in Suse. The breakdown
is shown in Table III. The Total column in Table III represents
the total number of unique modules that can be loaded from all
request_module() sites in the core kernel. In particular,
our fuzzer discovered 316 out of 371 (85.1%) unprivileged
loadable modules with concrete test cases to trigger the module
loading in Ubuntu kernel. As for Fedora, we discovered 236
out of 272 (86.7%) versus 299 out of 361 (82.8%) in Debian.
Suse has the lowest ratio of unprivileged loadable modules
– 311 out of 465 (66.8%), as it has the highest number of
loadable modules. After collecting the unprivileged module
loading results, SyzBridge builds a database of PoCs that
can load the corresponding modules to support the privilege
adaptation.

E. Privilege Adaptation for Kernel Security Checks

Modern Linux kernels have a feature called namespace [25]
where an unprivileged user can create a namespace dynami-
cally and make itself a privileged user within the namespace.
This feature is commonly enabled in downstream kernels, i.e.,
when kernel.unprivileged_userns_clone is set to
1. When used, an unprivileged user can have the illusion that
it is root user and can be granted any capabilities.

Therefore, if a PoC fails to pass certain security checks
can now pass through them by running inside a namespace. In
fact, prior exploits have leveraged such techniques to achieve
privilege escalation (e.g., [3] [2]). For example, a capabil-
ity check is usually accomplished by ns_capable() and
its variant functions, e.g., ns_capable(net->user_ns,
CAP_NET_ADMIN) verifies if the net namespace of the
process contains CAP_NET_ADMIN. However, some kernel
functionalities would verify the privilege of the calling process
by its original identity rather than the one in the namespace,
e.g., ns_capable(&init_user_ns, cap). This is sim-
ilar for uid and gid checks.

We instrument the upstream kernel so that the exact check
can be pinpointed along the execution. For each check func-
tion, we inspect the examined namespace by the check. If it
is init_user_ns, we conclude that it is not possible for
an unprivileged user to satisfy this check. In other cases, we
perform the namespace adaptation with the highest privilege
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available, such as setting the uid and gid to 0 and granting
all capabilities.

V. EVALUATION

A. Experiment Design

We designed two experiments to evaluate: (1) the effec-
tiveness of adapting upstream PoCs to downstream kernels
using SyzBridge, using a general dataset of all KASAN bugs
in the upstream, and (2) the effectiveness of bridging the gap
of a state-of-the-art upstream exploitability assessment tool,
SyzScope [70], using a specific dataset of high-risk upstream
bugs.

For each syzbot bug, we select the candidate major release
kernels based on the same two criteria as in the exploratory
experiment: (1) the bug has not been patched in the down-
stream kernel, and (2) the corresponding major release is still
under support when the bug is discovered. (Table VII shows
the complete distro dataset we used for the evaluation).

Experiment I: Evaluate upstream PoC adaptations.
We use the same dataset as in the exploratory experiment in
§III. In total, we prepared 230 upstream KASAN bugs from
syzbot, and 43 downstream distro releases from four major
vendors: Ubuntu, Fedora, Debian, and Suse. We conducted
all the experiments on the same machine as the exploratory
experiment. We give 600 seconds for each attempt to run
the PoC. Since we have run the PoC on the downstream
kernel as root user and an unprivileged user before, we now
attempt to run SyzBridge to improve the triggerability results.
Specifically, if the PoC does not even trigger the bug as
root, SyzBridge applies the environment-related adaptations
accordingly to see if it can trigger as a result. If it is successful,
SyzBridge then apply privilege-related adaptations to attempt
to downgrade its privilege requirements. We record the results
of the adaptations accordingly.

Experiment II: Evaluate exploitability assessment
pipeline. To understand how many upstream high-risk bugs
indeed affect downstream kernels, we conducted an additional
experiment by feeding the results of SyzScope which turned
183 seemingly low-risk bugs into high-risk ones. Additionally,
we use all KASAN write bugs from 2017 to 2022, which are
considered as high-risk already. In total, the dataset constitutes
a total number of 282 high-risk upstream bugs and 68 distros.
We use the same experiment setup – 600 seconds for each
attempt, 5 hours maximum for SyzScope (1 hour of fuzzing
and 4 hours of symbolic execution).

B. Results of Experiment I

Table IV shows the breakdown of the results, similar to
how we presented exploratory experiment results, we merged
distro major releases into a single category by the vendor. We
knew from the exploratory experiment that only 55, 58, 33 and
29 out of 230 bugs are triggered by Ubuntu, Fedora, Debian,
and Suse respectively. In addition, only 2, 3, 2, and 1 bugs
(0.4% - 1.3%) are triggered directly by an unprivileged user.

Surprisingly, looking at the final result after applying
SyzBridge, we can see from the column “After Adaptation”
that 86, 77, 63, and 57 bugs can be triggered by root,
representing an average of 27 additional bugs triggered per

distro vendor, an improvement of 61%. More importantly, 27,
46, 21, and 18 bugs can be triggered by an unprivileged user,
representing an average of 26 additional bugs whose privilege
requirement is downgraded, an improvement of 1,300%.

To attribute the success to the various types of adaptations,
we count how many times a particular type of adaptation
helped in Table IV. Regarding the environment adaptation,
we find that the distro background noise related adaptations
are the most common (EA2) and the adaptations for failed
preparation steps (EA1) are the least common. The high EA2
count illustrates how different the environment of a distro
OS is compared to a minimal OS configured specifically for
fuzzing (on syzbot). In particular, Ubuntu has a significant
number of bugs that fail to reproduce because of the distro
noise. We investigated the cause and it turns out that the
major reason is that Ubuntu comes with a package pre-installed
called snap [15] while the other three vendors did not. It is a
software packaging and development system that helps rapidly
deploy software without worrying about dependencies, it is
an official piece of software developed by Canonical [1]. To
install snap packed app, it has to be first decompressed and
then mounted through loop devices [11]. Due to the limited
number of loop devices, Ubuntu pre-installs a number of
snap apps that occupy most of the existing loop devices
right after boot and leave other processes (e.g., PoC) unable to
access these critical resources. Because snap is only installed
and used on Ubuntu distros, we can see that the other two
distros suffer less from the resource competition issue (there
are still other system processes that occupy a subset of loop
devices).

Kernel module missing (EA3) is the second most common
type of environment adaptation that is helpful, we see 9, 4,
21, and 11 bugs that have become triggerable after SyzBridge
load the required modules. It is interesting to note that the
number of bugs that require additional modules on Ubuntu
is twice as many as those on Fedora. To make sense of
the discrepancy, we find that the total numbers of loadable
kernel modules, including those that cannot be loaded through
request_module(), on these two distros are ∼6,000 for
Ubuntu-22.04 versus ∼4,000 for Fedora-36 respectively, in-
dicating that Ubuntu has a larger attack surface and explains
why more bugs can be adapted through module loading. Note
that the number of modules loadable by an unprivileged user
is substantially small (estimated in Table III). Debian has the
highest number of EA3 adaptations. Upon investigation, we
find that it is due to Debian’s kernel configuration setting for
CONFIG_BLK_DEV_LOOP, which is set to m. This configu-
ration indicates that the loop device will be compiled into a
module. As a result, Debian needs to load the loop module
when required. This specific reason accounts for 17 out of
the 21 EA3 adaptations observed in Debian. Similarly, Suse
also experiences the same cause, with 6 out of the 11 EA3
adaptations due to loading loop modules.

Note that a single bug may affect multiple release versions
of a distro, such as Ubuntu-20.04 and Ubuntu-18.04. It is
possible that certain releases require adaptations while others
can directly reproduce the bug. In such cases, the bug will
be counted in both the ”Before Adaptation” column and the
”Environment Adaptation” column. Therefore, simply adding
the numbers in ”Before Adaptation - root” with the ”Environ-
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Table IV: Experiment I overall results

Distro Before Adaptation Environment Adaptation Privilege Adaptation After Adaptation

root normal Total Bugs EA1 EA2 EA3 Total Bugs PA1 PA2 root normal

Ubuntu 55 2 46 3 36 9 26 5 26 86 27
Fedora 58 3 20 3 14 4 43 1 42 77 46
Debian 33 2 30 4 24 21 18 2 18 63 21
Suse 29 1 24 0 19 11 17 0 17 57 18

EA1: Environment adaptation for failed preparation steps. EA2: Environment adaptation for background noise.
EA3: Environment adaptation for module loading.
PA1: Privilege adaptation for module loading. PA2: Privilege adaptation for kernel security checks.

ment Adaptation - Total Bugs” may result in a higher number
than the ”After Adaptation - root”. This rule also applies to
”Privilege Adaptation”.

Moving on to privilege adaptation, adaptations for kernel
security checks (PA2) are the most common. This is due to
more and more features becoming “unavailable” to a regular
user, which is supposed to reduce the attack surface. Never-
theless, it turns out that many of such “protected” features
can become readily available as long as the namespace is
enabled (which is the case in most modern Linux distros).
Adaptations for unprivileged module loading (PA1) are less
common but are still helpful. Recall that there are bugs that
require EA3 adaptations to load additional modules. With the
help of the database we built from the results of guided fuzzing
(mentioned in §IV-D), we found a subset of those cases where
we can load such modules as an unprivileged user. This step is
necessary in two of the six real-world CVEs as well as other
high-risk but unexploited bugs, which we will discuss in §V-C.

Some bugs, despite not having privilege requirements, may
fail to reproduce due to environmental issues. In these cases,
only environment adaptation is needed to be reproduced by
a normal user. For example, in Table IV, Debian initially
had 2 bugs reproducible by a normal user, and after privilege
adaptation of 18 bugs, it increased to 21 bugs, with one bug
requiring only environment adaptation.

False Positives. SyzBridge runs a concrete test case
to reproduce a kernel bug, and thus it in theory should
not have any false positives by design. SyzBridge does
instrument the downstream kernels so that it can capture
KASAN bugs. This requires recompiling the kernel and en-
abling a few kernel config options such as CONFIG_KASAN,
CONFIG_DEBUG_KERNEL, etc.. We are aware that occa-
sionally sanitizers will report false positives due to sanitizer
bugs [7]. Nevertheless, we consider such issues to be out of
the responsibility of SyzBridge. Instead, we assume sanitizers
to be correctly implemented in this project.

False Negatives. We sample 20 bugs that fail to trigger on
some downstream kernels. For each bug, we sample between
one to three downstream kernels to investigate. In total, this
gives us 40 bug-distro pairs. After our manual investigation by
cross-checking the vulnerable commit and code snippets, we
have identified 36 out of 40 pairs are true negatives, which
indicates the bug does not exist in the target distro. The four
false negatives fall under two reasons which we summarize
below.

Table V: Experiment II overall results

Distro Before Adaptation After Adaptation

root normal root normal

Ubuntu 54 1 82 35
Fedora 48 3 82 50
Debian 47 3 84 31
Suse 27 1 42 9

(1) Failing to win the race within a given time limit. As
we mentioned in §IV, downstream OSes contain many more
user space processes and services than upstream. The worse
background noise results in difficulty in winning a race, so the
PoC requires a longer repeat execution time. However, we set
a time limit of 600 seconds for each bug-triggering attempt to
make SyzBridge scalable. If the PoC still cannot win the race
within 600 seconds, we will give up this case and consider it
failed. To know how many bugs failed due to this problem, we
ran a separate experiment for these bugs that extended the time
limit to 24 hours and noticed 1 PoC can successfully trigger
the bug in an hour and another PoC triggered the bug after 23
hours. Note that we only limit the reproducing time because
of the sheer number of bug/distro pairs in our experiment.
However, we envision the limit can be lifted easily in a real
deployment setting where we run SyzBridge with syzbot side
by side. That way, only a few bugs need to be analyzed per
day on average.

(2) Failing to extract PoC execution trace. We find two
pairs where we did not successfully obtain the execution trace
from the upstream kernel. This results in a failure of our
missing module analysis, and further impacts the adaptation.
The reason is due to kernel crashes sometimes, resulting in
partial losses of the execution trace. This is something we can
potentially overcome by improving the way ftrace collects
the execution traces.

C. Results of Experiment II

Out of the 282 high-risk upstream bugs, we found that,
on average, 44 (15.6%) bugs could be reproduced on at
least one distribution, without any adaptation provided by
SyzBridge. However, only an average of 2 (0.7%) bugs could
be reproduced with normal privileges, which is a crucial
requirement for an exploitable bug. Table V shows the de-
tailed results before and after applying SyzBridge. Without
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Table VI: High-risk bugs from experiment II

Bug Bug
Primitive Affect Before Adaptation Environment Adaptation Privilege Adaptation After Adaptation

root normal EA1 EA2 EA3 PA1 PA2 root normal

CVE-2022-27666* OOB W UFD F - - UD UD UD UFD - UFD
CVE-2022-0185 OOB W UFD UFD - - - - - UFD - UFD
CVE-2021-22600 DF UFD UFD - - - - - UFD - UFD
CVE-2021-22555 OOB W UFD F - - UD UD UD UFD - UFD
CVE-2021-4154 CFH UFD UFD - - - - - UFD - UFD
CVE-2021-3715 UAF W U U - - - - - U - U
cf7393b* UAF W UFD UFD - - - - - UF D UF
4b0830a UAF W UFD U D - - F - F U FD
e67f2fc UAF W UFD - - - UFD - - UFD - UFD
2389bfc* CFH UFD UFD - - - - - F UD F
403eb21 CFH UFS UF - S - - - UF S UF
f4c90f2* OOB W UFDS UFDS - - - - - UFS D UFS
380acd1* DF UF UF - - - - - UF - UF
b53aed2 OOB W UFD UFD - - - - - UFD - UFD
e2d0f38 CFH F - - - F - - F - F
d35e6e8 NPD W UFD UFD - - - - - UFD - UFD
60e3243 CVW UFDS UFDS - - - - - UFDS - UFDS
a53b68e OOB W UF F - - U U U UF - UF
5ad0e07 NPD W UF UF - - - - - UF - UF
7c7245f OOB W UFD UFD - - - - - UFD - UFD
f1834e1 CFH FD - - D FD - - - - FD
ed87cd6 CFH F F - - - - - F - F
e4c5c37 AVW FD - - - FD - - F D F
e3e31b1 UAF W FD F - - D - - F D F
b8febdb UAF W FD - - - - FD FD FD - FD
ba1aecb DF FD F - - D - - FD - FD
955089c CFH FD FD - - - - - FD - FD
457491c CFH UFD - - UFD - UFD UFD UFD - UFD
6578348 CFH UFDS UD FS - - - - UD - UFDS
26de18d CVW UFD - - U UFD - - UF D UF
418578d UAF W UFD - - UD UFD - - F - UFD
2a62245 OOB W F F - - - - - F - F
232223b UAF W FS FS - - F - - F S F
27934d2 UAF W UFDS UFDS - - - - - UFS D UFS
26cb120 DF UFD UFD - - - - - UF D UF
0c4fd9c AVW UFDS UFDS - - - - - UFDS - UFDS
f99edae UAF W UFD UFD - - - - - U FD U
d020174 UAF W UD - - U - - - U D U
db84232 DF D - - D - - - - - D
5bb09c0 AVW UFDS UFS - D - - - UFDS - UFDS
7be8b46 CVW D - - - D - - - - D
c897760 UAF W D - - - D - - - - D
f381dee AAW UFDS UFS D - - - - - UFS D
481c3fd UAF W UFDS UFDS - - - - - FS U FDS
8393c02 OOB W UDF UDF - - - - - UF D UF
551ff46 UAF W UF F - - - U - F U F
80f661b OOB W F - F - - - - - - F
264bca3 OOB W UFD - UFD - - - - - - UFD
d425214 DF UFD FD - - U - - - FD U
522643a UAF W UFDS UFDS - - - - - F UDS F
a0d209a DF DF DF - - - - - DF - DF
34b3d29 UAF W F F - - - - - F - F

* indicates the bugs we developed exploits for
U: Ubuntu, F: Fedora, D: Debian, S: Suse
OOB W: out-of-bounds write, UAF W: use-after-free write, DF: double free, CFH: control flow hijacking
NPD W: null-ptr-defer write, CVW: constrained value write (of a specific variable)
AVW: arbitrary value write, AAW: arbitrary address write
EA1: Environment adaptation for failed preparation steps. EA2: Environment adaptation for background noise.
EA3: Environment adaptation for module loading
PA1: Privilege adaptation for module loading. PA2: Privilege adaptation for kernel security checks
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SyzBridge, SyzScope’s results can confirm only 54, 48, 47,
and 27 root-triggerable bugs for Ubuntu, Fedora, Debian, and
Suse, respectively. Furthermore, only 1, 3, 3, and 1 bugs
are triggerable by normal privileges — this result delivers
a misleading impression of the exploitability of such bugs
in the downstream Linux distros. However, the evaluation
results significantly improved after we applied SyzBridge.
Specifically, SyzBridge adapted an additional 28, 34, 37,
and 15 PoCs for Ubuntu, Fedora, Debian, and Suse, respec-
tively, successfully triggering the corresponding bugs. This
enhancement resulted in an improvement of 51%, 70%, 78%,
and 56% for each distribution. Impressively, SyzBridge also
downgraded the privilege requirements for 29 bugs on average
per distro, improving the results by 15 times — more than an
order of magnitude. It changes the total number of high-risk
“downstream-applicable” bugs from 4 to 53 across all four
distros. Clearly, by integrating with SyzBridge, SyzScope’s
results become much more relevant to downstream kernels in
the real world.

We list all 53 bugs and their affected downstream distro
vendors in Table VI. They include all of the 6 existing
CVEs we gathered from the Internet. They originate from
syzbot upstream bugs, and have been exploited on downstream
distros; in other words, none were missed by SyzBridge.
Note that one of the CVEs is credited to our efforts, where
we successfully developed an end-to-end exploit against the
latest Ubuntu distro . Furthermore, the remaining 47 high-
risk “downstream-applicable” bugs have not been assigned
CVEs to this day, which are potentially weaponizable (we will
discuss our efforts in attempting to turn them into exploits
later in this section). The results indicate that indeed many
potentially exploitable bugs (relevant to downstream distros)
were neglected by exploitability assessment tools and human
experts. Therefore, it demonstrates the value of SyzBridge and
its important role in exploitability assessment in the Linux
kernel ecosystem.

In particular, 9 bugs have a control flow hijack primitive,
which is a very strong primitive that can be exploited through
return-oriented programming for instance. In addition, there
are 16 use-after-free (UAF) write bugs, 11 out-of-bound (OOB)
write bugs, and 7 double-free bugs, which are all highly likely
exploitable as well.

If we look at Table VI more closely, we can see that
only 5 bugs are triggered directly without SyzBridge by
an unprivileged user. All other cases went through various
adaptations to succeed. In particular, 10 pairs required module
loading to become triggerable by an unprivileged user, and 91
pairs require namespace. Note that when both adaptations are
listed in the table, it means that both are required for the bug
to trigger.

End-to-end exploitation. To validate the exploitability of
the bugs identified through our integrated pipeline, we sampled
5 bugs from Table VI that were previously not known to
be exploitable publicly — they are annotated with the ∗
symbol. The five cases include the one CVE case that is
assigned due to our reporting. We succeeded in exploiting
all five of them and achieving privilege escalation in one
of the affected downstream distros. This sample consisted
of one open (unfixed) bug at the time and four other fixed
bugs. The open bug has a write primitive and SyzBridge

1 net/sched/cls_api.c:
2 static int tc_new_tfilter(struct sk_buff *skb,
3 struct nlmsghdr *n, struct netlink_ext_ack *extack)
4 {
5 struct net *net = sock_net(skb->sk);
6 if (!netlink_ns_capable(skb, net->user_ns,

CAP_NET_ADMIN))
7 return -EPERM;
8 err = __tcf_qdisc_find(net, &q, &parent, t->

tcm_ifindex, false, extack);
9 if (err)

10 return err;
11 vulnerable_func();
12 }
13

14 net/ipv4/ipip.c:
15 static int __net_init ipip_init_net(struct net *net)
16 {
17 dev = alloc_netdev(ops->priv_size, name,

NET_NAME_UNKNOWN, ops->setup);
18 if (!dev) {
19 err = -ENOMEM;
20 goto failed;
21 }
22 err = register_netdevice(dev);
23 }
24

25 module_init(ipip_init);
26 ...

Figure 3: Case study of bd699d3

adapted it successfully to reproduce on the Ubuntu distro.
We successfully developed an end-to-end exploit that bypasses
all the kernel mitigation and escalates the local privilege on
the latest Ubuntu kernel. We later reported it to the Ubuntu
maintainers and CVE association, the detail of how we handle
this vulnerability is in $VI-D. As for the four fixed bugs, we
chose to develop simplified end-to-end exploits by disabling
kernel defenses such as KASLR, smap, and smep, as proof-of-
exploitability.

In summary, we demonstrate the power of the automa-
tion and effectiveness of SyzBridge in analyzing the bug
exploitability against downstream kernels.

D. Case Study

bd699d3 Figure 3 shows two functions:
tc_new_tfilter() and ipip_init_net(). The
first function is located in the core part of the kernel (as
opposed to a kernel module), and the second is located in a
kernel module called ipip. The bug is related to the first
function. To trigger the bug, it is necessary to reach line 11
(labeled as vulnerable_func()). Before line 11, we can
see there are two checks at line 6 and line 9 that need to be
cleared.

Initially, when we execute the PoC on a downstream
kernel, Ubuntu-20.04.2 in this case, as root user, we find
that it fails the second check (line 9), aborting the exe-
cution early. Looking at it more closely, we realize that
__tcf_qdisc_find() attempts to retrieve a network de-
vice from a global net_device linked list by a specific
id. Normally, a network device will be put into this linked
list during the module_init function when initializing the
module. In syzbot, it compiles upstream kernels by statically
linking all kernel modules (most commonly used ones) into
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1 void rtnetlink_rcv_msg(void)
2 {
3 __rtnl_lock();
4 rtnl_dellink()
5 __rtnl_unlock();
6

7 ...
8 if (dev->needs_free_netdev)
9 free_netdev(dev);

10 }
11

12 static void tun_detach(struct tun_file *tfile, bool
clean)

13 {
14 __rtnl_lock();
15 ..
16 __tun_detach(tfile, clean);
17 ..
18 __rtnl_unlock();
19 }

rtnetlink_rcv_msg()

__rtnl_lock()
…
__rtnl_unlock()

tun_detach

__rtnl_lock()
__tun_detach()
__rtnl_unlock()

rtnetlink_rcv_msg()

…
free_netdev()

Figure 4: Case study of e67f2fc

a monolithic kernel binary [20], instead of compiling them
into individual loadable modules (i.e., separate .ko files).
As a result, every network device is automatically put into
this global net_device linked list during the kernel boot
process. In contrast, Ubuntu-20.04.2 does not statically link
most network device kernel modules into the kernel binary and
instead maintain them as separate loadable modules. To trigger
the bug, we simply need to load the requested network device
ipip before running the PoC, e.g., through modprobe, the
module will be initialized. As shown in Figure 3, function
ipip_init_net() that will register a network device and
register it through the global net_device linked list. Be-
cause this buggy code is not tied to the module functionality, as
long as it passes the check at line 9, the bug will be triggered.

e67f2fc. As shown in Table VI, this bug requires envi-
ronment adaptation for background noises in order to trig-
ger the bug on downstream distros. More specifically, Fig-
ure 4 shows that when the vulnerable object is destroyed by
__tun_detach at line 16, another kernel thread might still
be using it by free_netdev() at line 9. As shown in
the interleaving graph (bottom half of Figure 4), in order to
trigger the bug, the thread executing tun_detach() must
be scheduled to go right after the lock has been released at
line 5 and before free_netdev() is executed at line 9.
Surprisingly, the upstream kernel seems to win the race easily,
with no loop to repeat the race. However, the same PoC cannot
win the race in downstream distros. When SyzBridge executes

it one-time and observes that it did not trigger the bug, it forces
the PoC to repeat until either the bug is triggered or a timeout is
reached. On the downstream kernels, such a simple adaptation
causes the race condition to be triggered in less than a second.

VI. LIMITATIONS AND DISCUSSION

A. Missing kernel traces

Aside from the engineering issue of not being able to col-
lect the complete execution traces sometimes, there is another
important decision that may cause the traces to be incom-
plete in our current design. Specifically, SyzBridge currently
inspects only the traces corresponding to the PoC process and
ignores all other traces. This is to avoid unrelated modules
being considered relevant to the bug. However, kernel bugs are
not always triggered within the PoC process. Sometimes they
can also be triggered by kernel worker threads. Worker threads
are kernel internal threads, they can be created on demand or
long-running. In either case, it would not have the same pid
as that of the PoC process. If a bug is triggered in such kernel
threads, SyzBridge cannot tell which kernel worker thread is
the one related to the bug and will not load the corresponding
kernel module if missing in downstream kernels. In our dataset,
we have not encountered this issue. However, to support this,
one potential solution is to learn from the upstream bug report
which does contain some information (e.g., call stack) about
the kernel thread that triggered the bug. This can be used to
locate the relevant kernel thread to be included in our analysis.

B. Unprivileged module loading

Because the search process provided by fuzzing is op-
portunistic in nature, it is inevitable to have false negatives.
In other words, we might miss modules that can actually
be loaded with an unprivileged user. Currently, we con-
strain the search space of syscalls that can potentially reach
request_module(). However, since we rely on existing
syzkaller descriptions which encode a limited set of syscalls
and arguments, we are inherently limited by the coverage of
these descriptions. Indeed, many request_module() are
never reached during our fuzzing session. As future work, we
can incorporate more input sources such as the Linux testing
project that can potentially improve the odds of reaching
request_module(). This has been attempted by several
prior work [56], [50], [33], [35].

C. Code context change

We initially anticipated many cases of code context changes
that impact the triggerability of the bug, requiring adjustments
of the test case, e.g., changing a constant of a syscall argument.
Indeed, a recent project [45] proposed to make adjustments
to an exploit so that it can succeed on a different kernel
version. However, the project simply assumes the bug itself
is always triggered by the exploit and focuses on the adap-
tation of the post-bug-triggering logic of the exploit. Exploits
require additional steps such as heap feng shui, converting one
primitive to another, and bypassing defenses such as KASLR.
They are much more complicated than bug-triggering PoCs,
and therefore code context changes affect the exploits much
more. When we look at the results of this project, indeed it is
rare that PoCs fail due to code context changes.
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D. Ethics consideration

For the 1-day vulnerability that we successfully exploited,
we did not publicly release any information regarding the
exploit until after we responsibly disclosed it to a CVE
authority (which led to a CVE number assigned promptly)
and all affected distro vendors patched the vulnerability.

E. Integration with other bug assessment systems

While SyzBridge can be helpful to reveal the triggerability
and privilege requirement of upstream bugs on downstream
distros, it does not tell the full story of bug impacts. We en-
vision SyzBridge integrated with other automated bug impact
analysis systems for fuzzer-exposed bugs [70], [32], [66]. In
fact, we already made a small integration with SyzScope [70]
that revealed more exploitable primitives of given bugs. Fur-
thermore, SyzBridge can also work with existing automatic
exploit generation systems like KOOBE [32] and FUZE [66].
Such an automated pipeline can provide a comprehensive
exploitability assessment capability that assists security re-
searchers in understanding the capabilities of a bug.

F. Upstream patch propagation

It is important to note that affected downstreams must
promptly port the patches, even if the upstream has already
patched the bugs identified by syzbot. This is because the
downstreams are the ones actually utilized by the end users.
Unfortunately, we know that the propagation of upstream
patches to downstreams can be time-consuming. It has been
shown that the patch delay between upstream and downstream
kernels (i.e., Android) is often months and even years. This
is because patch porting is a labor-intensive and error-prone
process where downstream maintainers need to understand the
patch and its impact, and even adapt it to their own code
base. They also need to ensure that the whole system, after
applying the patch, still works as expected. In the case of the
53 bugs shown in Table VI, we find that 38 of them do not
need any adaptation and can therefore be technically ported
quickly. There have been some recent progress on automati-
cally determining the correctness and safety of patches [38],
[49], [55], as well as adapting a patch when it is ported [60],
[59]. Such techniques can potentially be helpful shortening the
patch propagation delay.

VII. RELATED WORK

Cross-version Bug and Exploit Assessment. A large body
of work focused on detecting recurring bugs [67], [44], [57],
[47]. They aim to statically determine, based on various code
similarity metrics, whether a given bug in a reference code
base exists in a target code base. However, such approaches
are imprecise in nature and cannot provide a concrete PoC
to actually trigger the bug. VulScope [36] offers a dynamic
approach to migrate the PoC to a different version of the
user-space software that triggers the same bug. It utilizes the
crashing trace from the reference version of the software to
guide the fuzzing mutation. But their solution aims at user-
space programs instead of the Linux kernel. In fact, as we
show in this paper, the failure reasons and required adaptations
identified in the kernel are completely different from what

is needed for user-space programs. AEM [45] does aim at
the Linux kernel. However, its goal is to migrate exploits as
opposed to bug PoCs. This is an important distinction because
exploits are much longer than PoCs and thus more likely to
require adaptations. In fact, AEM assumes that the original
exploit can successfully trigger the bug on the target kernel
without adaptations, and only tries to adapt the post-bug-
triggering logic. Therefore, it is orthogonal to what SyzBridge
addresses.

Bug Exploitability Assessment. Some prior works [58], [61],
[62] make use of qualitative metrics to score bug primitive.
Evocatio [46] leverage a capability-guided fuzzer to uncover
new bug primitives for bugs in user-space software; The results
show that 19 out of 38 bugs have more serious primitives, re-
sulting in their CVSS scores being raised. SyzScope [70] aims
to uncover primitives for Linux kernel bugs, by combining
kernel fuzzing, static analysis, and symbolic execution. In the
end, SyzScope escalate 183 kernel low-risk bugs to high-risk
bugs and discovered a total of 4,800 new high-risk primitives
for the 183 bugs.

Automated Exploit Generation. Brumley’s work [30] first
introduced automated exploit generation based on patches
(AEGP). Averions proposed the AEG concept [29] in 2014.
Revery [65] leverages concolic execution and memory mod-
eling to make AEG scalable. For user space program,
AngErza [37] and Huang’s work [43] use symbolic execution
to module the bug primitives of real-world programs. In the
context of the Linux kernel, FUZE [66] targets Use-after-free
bugs specifically, while KOOBE [32] focuses on heap out-
of-bound write bugs. They both utilize fuzzing and symbolic
execution to explore new paths and discover exploitable states
such as arbitrary memory write, and control flow hijacking.
K-LEAK [51] attempts to automate the generation of infoleak
exploits given fuzzer-exposed bugs with PoCs, which are often
necessary to achieve end-to-end privilege escalation.

VIII. CONCLUSION

This paper is motivated by our attempt to understand why
an upstream PoC cannot trigger bugs in downstream Linux
distributions. Through our small-scale exploratory experiment,
we develop an automated system named SyzBridge that can
adapt the PoC to satisfy the requirements, resulting in not only
successful bug triggering but also downgrading of privilege
requirement. Our evaluation of 230 upstream bugs shows that
our adaptation is effective as it successfully turned 61% more
bugs triggerable by root and 13 times more bugs triggerable
by an unprivileged user.
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APPENDIX

Distro Major Release Code Name Kernel Version Released Date End of Support date

Ubuntu

Ubuntu-16.04.2 xenial 4.4.62 Feb 16 2017 Apr 27 2021
Ubuntu-16.04.3 xenial 4.4.87 Aug 3 2017 Apr 27 2021
Ubuntu-16.04.4 xenial 4.4.116 Mar 1 2018 Apr 27 2021
Ubuntu-16.04.5 xenial 4.4.131 Aug 2 2018 Apr 27 2021
Ubuntu-16.04.6 xenial 4.4.142 Feb 28 2019 Apr 27 2021
Ubuntu-16.04.7 xenial 4.4.186 Aug 13 2020 Apr 27 2021
Ubuntu-18.04 bionic 4.15.20 Apr 26 2018 -
Ubuntu-18.04.1 bionic 4.15.29 Jul 26 2018 -
Ubuntu-18.04.2 bionic 4.15.45 Feb 15 2019 -
Ubuntu-18.04.3 bionic 4.15.55 Aug 8 2019 -
Ubuntu-18.04.4 bionic 4.15.76 Feb 12 2020 -
Ubuntu-18.04.5 bionic 4.15.112 Aug 13 2020 -
Ubuntu-18.04.6 bionic 4.15.157 Sep 17 2021 -
Ubuntu-20.04 focal 5.4.26 Apr 23 2020 -
Ubuntu-20.04.1 focal 5.4.42 Aug 6 2020 -
Ubuntu-20.04.2 focal 5.4.65 Feb 4 2021 -
Ubuntu-20.04.3 focal 5.4.81 Aug 26 2021 -
Ubuntu-20.04.4 focal 5.4.100 Feb 24 2022 -
Ubuntu-20.04.5 focal 5.4.125 Sep 1 2022 -
Ubuntu-22.04 jammy 5.15.25 Apr 21 2022 -
Ubuntu-22.04.1 jammy 5.15.43 Aug 11 2022 -

Fedora

Fedora-26 26 4.11.8 Jul 11 2017 May 29 2018
Fedora-27 27 4.13.9 Nov 14 2017 Nov 30 2018
Fedora-28 28 4.16.3 May 1 2018 May 28 2019
Fedora-29 29 4.18.16 Oct 30 2018 Nov 26 2019
Fedora-30 30 5.0.9 May 7 2019 May 26 2020
Fedora-31 31 5.3.7 Oct 29 2019 Nov 24 2020
Fedora-32 32 5.6.6 Apr 28 2020 May 25 2021
Fedora-33 33 5.8.16 Oct 27 2020 Nov 30 2021
Fedora-34 34 5.11.12 Apr 27 2021 Jun 7 2022
Fedora-35 35 5.14.10 Nov 2 2021 -
Fedora-36 36 5.17.5 May 10 2022 -

Debian

Debian-9.0 stretch 4.9.30 Jun 17 2017 July 18 2020
Debian-9.1 stretch 4.9.30 Jul 22 2017 July 18 2020
Debian-9.2 stretch 4.9.51 Oct 7 2017 July 18 2020
Debian-9.3 stretch 4.9.65 Dec 9 2017 July 18 2020
Debian-9.4 stretch 4.9.82 Mar 10 2018 July 18 2020
Debian-9.5 stretch 4.9.110 Jul 14 2018 July 18 2020
Debian-9.6 stretch 4.9.130 Nov 10 2018 July 18 2020
Debian-9.7 stretch 4.9.130 Jan 23 2019 July 18 2020
Debian-9.8 stretch 4.9.144 Feb 16 2019 July 18 2020
Debian-9.9 stretch 4.9.168 Apr 27 2019 July 18 2020
Debian-9.10 stretch 4.9.189 Sep 7 2019 July 18 2020
Debian-9.11 stretch 4.9.189 Sep 8 2019 July 18 2020
Debian-9.12 stretch 4.9.210 Feb 2 2020 July 18 2020
Debian-10.0 buster 4.19.37 Jul 6 2019 Sep 10 2022
Debian-10.1 buster 4.19.67 Sep 7 2019 Sep 10 2022
Debian-10.2 buster 4.19.67 Nov 16 2019 Sep 10 2022
Debian-10.3 buster 4.19.98 Feb 8 2020 Sep 10 2022
Debian-10.4 buster 4.19.118 May 9 2020 Sep 10 2022
Debian-10.5 buster 4.19.132 Aug 1 2020 Sep 10 2022
Debian-10.6 buster 4.19.146 Sep 29 2020 Sep 10 2022
Debian-10.7 buster 4.19.160 Dec 5 2020 Sep 10 2022
Debian-10.8 buster 4.19.171 Feb 6 2021 Sep 10 2022
Debian-10.9 buster 4.19.181 March 27 2021 Sep 10 2022
Debian-10.10 buster 4.19.194 June 19 2021 Sep 10 2022
Debian-10.11 buster 4.19.208 Oct 9 2021 Sep 10 2022
Debian-10.12 buster 4.19.235 March 26 2022 Sep 10 2022
Debian-11.0 bullseye 5.10.46 Aug 14 2021 -
Debian-11.1 bullseye 5.10.70 Oct 9 2021 -
Debian-11.2 bullseye 5.10.84 Dec 18 2021 -
Debian-11.3 bullseye 5.10.106 March 26 2022 -
Debian-11.4 bullseye 5.10.127 Jul 9 2022 -

Suse

SLE-15-Initial 15 4.12.14-23 Jul 16 2018 Dec 31 2019
SLE-15-SP1 15 4.12.14-195 Jun 24 2019 Jan 31 2021
SLE-15-SP2 15 5.3.18-22 Jul 21 2020 Dec 31 2021
SLE-15-SP3 15 5.3.18 Jun 22 2021 Dec 31 2022
SLE-15-SP4 15 5.14.21 Jun 21 2022 -

- indicates that the distro is still remain valid up until the date we submit this paper

Table VII: Distro Dataset
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